POJ3169 差分约束 线性

Layout

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12522   Accepted: 6032

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

题意:

我认为题意英文正常的都可以看的懂吧。

就是奶牛排队,一个地方可以容纳许多奶牛,

奶牛有互相喜欢的和互相讨厌的,

  先输入喜欢的,1号3号相互喜欢,距离不能超过10

  2和4不能超过20,2,3不能小于3

  对于喜欢输入A,B,C

  就是说d[B]-d[A]<=C;

  转化为,d[B]<=C+d[A];

  求最多,用最短路,下面也需要化成形式一致的才可以。

  不能忘了d[i]-d[i-1]>=0这个限制。

 1 #include<cstring>
 2 #include<cmath>
 3 #include<iostream>
 4 #include<algorithm>
 5 #include<cstdio>
 6 #include<queue>
 7 #define INF 2000000007
 8 #define N 1007
 9 #define M 10007
10 using namespace std;
11
12 int n,l,r;
13 int dis[N],num[N],ins[N];
14 int cnt,head[N],next[M*3],rea[M*3],val[M*3];
15
16 void add(int u,int v,int fee)
17 {
18     next[++cnt]=head[u];
19     head[u]=cnt;
20     rea[cnt]=v;
21     val[cnt]=fee;
22 }
23 bool Spfa()
24 {
25     for (int i=1;i<=n;i++)
26         ins[i]=0,dis[i]=INF,num[i]=0;
27     queue<int>q;
28     q.push(1);dis[1]=0,num[1]=1;
29     while(!q.empty())
30     {
31         int u=q.front();q.pop();
32         for (int i=head[u];i!=-1;i=next[i])
33         {
34             int v=rea[i],fee=val[i];
35             if (dis[v]>dis[u]+fee)
36             {
37                 dis[v]=dis[u]+fee;
38                 if (!ins[v])
39                 {
40                     num[v]++;
41                     ins[v]=1;
42                     q.push(v);
43                     if (num[v]>n) return false;
44                 }
45             }
46         }
47         ins[u]=0;
48     }
49     return true;
50 }
51 int main()
52 {
53     memset(head,-1,sizeof(head));
54     scanf("%d%d%d",&n,&l,&r);
55     for (int i=1,x,y,z;i<=l;i++)
56     {
57         scanf("%d%d%d",&x,&y,&z);
58         add(x,y,z);
59     }
60     for (int i=1,x,y,z;i<=r;i++)
61     {
62         scanf("%d%d%d",&x,&y,&z);
63         add(y,x,-z);
64     }
65     for (int i=2;i<=n;i++)
66         add(i+1,i,0);
67     bool flag=Spfa();
68     if (!flag) printf("-1\n");
69     else
70     {
71         if (dis[n]==INF) printf("-2\n");
72         else printf("%d\n",dis[n]);
73     }
74 }
时间: 2024-11-10 18:11:27

POJ3169 差分约束 线性的相关文章

POJ 3169 Layout(差分约束 线性差分约束)

题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距离, 若无解输出-1, 若无限长输出-2 分析: 3个关系对应的 <= 式子是: dis[b] - dis[a] <= d(1) dis[a] - dis[b] <= -d(2) dis[i] - dis[i+1] <= -1(2) 目标式:dis[N] - dis[1] <=

【POJ3169 】Layout (认真的做差分约束)

Layout Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they ar

poj3169 最短路(差分约束)

题意:一个农夫有n头牛,他希望将这些牛按照编号 1-n排成一条直线,允许有几头牛站在同一点,但是必须按照顺序,有一些牛关系比较好,希望站的距离不超过某个值,而有一些牛关系不太好,所以希望站的距离大于等于某个值,问1号牛和n号牛之间的最远距离是多少. 差分约束的裸题,对于 d[v] - d[u] ≤ w 建立权值为 w 的单向边 e(u,v),对于 d[v] - d[u]  ≥ w 建立权值为 -w 的单向边 e(v,u),然后再根据牛必须按顺序排列建立权值为 0 的边 e(i+1,i),然后最短

poj3169——Layout(差分约束+SPFA判断负环)

Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbe

【转载】夜深人静写算法(四)——差分约束

[转载]夜深人静写算法(四) - 差分约束  目录     一.引例       1.一类不等式组的解   二.最短路       1.Dijkstra       2.图的存储       3.链式前向星       4.Dijkstra + 优先队列       5.Bellman-Ford       6.SPFA       7.Floyd-Warshall   三.差分约束        1.数形结合        2.三角不等式        3.解的存在性        4.最大值

差分约束

1.bzoj3436 思路: 差分约束根据限制条件建图,注意要有一个超级源点向所有点连一条边权为0的边建图看代码. 然后spfa判负环,写bfs会超时的......实测n遍. #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #define inf 0x7fffffff #define ll long long #define N 100007 using na

bzoj2788 festival 差分约束

填坑中--链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2788 题意: 有$n$个正整数$X1,X2,...,Xn$,再给出$m1+m2$个限制条件,限制分为两类:1. 给出$a,b(1<=a,b<=n)$,要求满足$Xa + 1 = Xb$2. 给出$c,d (1<=c,d<=n)$,要求满足$Xc <= Xd$在满足所有限制的条件下,求集合${Xi}$大小的最大值. 首先看情况我们也知道是差分约束-- 但是这个差分

POJ 1201 Intervals 差分约束

http://poj.org/problem?id=1201 TLE了很久,因为用了cin..... 思路和其他差分约束差不多,http://www.cppblog.com/menjitianya/archive/2015/11/19/212292.html 如果区间[a, b]中至少有c个元素,如果用上面的博客,那么说明xa - xb >= c,但是注意这里是闭区间,xa - xb是不包括b这个点的, 就比如用了[a, b]有c个元素,[b, d]有x个,那么ans = c + x - 1个,

【bzoj2330】: [SCOI2011]糖果 图论-差分约束-SPFA

[bzoj2330]: [SCOI2011]糖果 恩..就是裸的差分约束.. x=1 -> (A,B,0) (B,A,0) x=2 -> (A,B,1)  [这个情况加个A==B无解的要特判] x=3 -> (B,A,0)  [恩这个是不少于一开始zz建反了] x=4 -> (B,A,1) x=5 -> (A,B,0) 然后源点到所有点建1的边[恩据说有条链所以要反着连]跑最长路就好了 1 /* http://www.cnblogs.com/karl07/ */ 2 #inc