哈夫曼树也叫最优二叉树(哈夫曼树)
问题:什么是哈夫曼树?
例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80~89分: B,70~79分: C,60~69分: D,<60分: E。
if (a < 60){ b = ‘E‘; } else if (a < 70) { b = ‘D’; } else if (a<80) { b = ‘C’; } else if (a<90){ b = ‘B’; } else { b = ‘A’; }
判别树:用于描述分类过程的二叉树。
如果每次输入量都很大,那么应该考虑程序运行的时间
如果学生的总成绩数据有10000条,则5%的数据需 1 次比较,15%的数据需 2 次比较,40%的数据需 3 次比较,40%的数据需 4 次比较,因此 10000 个数据比较的
次数为: 10000 (5%+2×15%+3×40%+4×40%)=31500次
此种形状的二叉树,需要的比较次数是:10000 (3×20%+2×80%)=22000次,显然:两种判别树的效率是不一样的。
问题:能不能找到一种效率最高的判别树呢?
那就是哈夫曼树
回忆树的基本概念和术语
路径:若树中存在一个结点序列k1,k2,…,kj,使得ki是ki+1的双亲,则称该结点序列是从k1到kj的一条路径。
路径长度:等于路径上的结点数减1。
结点的权:在许多应用中,常常将树中的结点赋予一个有意义的数,称为该结点的权。
结点的带权路径长度:是指该结点到树根之间的路径长度与该结点上权的乘积。
树的带权路径长度:树中所有叶子结点的带权路径长度之和,通常记作:
其中,n表示叶子结点的数目,wi和li分别表示叶子结点ki的权值和树根结点到叶子结点ki之间的路径长度。
赫夫曼树(哈夫曼树,huffman树)定义:
在权为w1,w2,…,wn的n个叶子结点的所有二叉树中,带权路径长度WPL最小的二叉树称为赫夫曼树或最优二叉树。
例:有4 个结点 a, b, c, d,权值分别为 7, 5, 2, 4,试构造以此 4 个结点为叶子结点的二叉树。
WPL=7´2+5´2+2´2+4´2= 36
WPL=7´3+5´3+2´1+4´2= 46
WPL=7´1+5´2+2´3+4´3= 35
WPL=7´1+5´2+2´3+4´3= 35
后两者其实就是最有二叉树(也就是哈夫曼树)
哈夫曼树的构造(哈夫曼算法)
1.根据给定的n个权值{w1,w2,…,wn}构成二叉树集合F={T1,T2,…,Tn},其中每棵二叉树Ti中只有一个带权为wi的根结点,其左右子树为空.
2.在F中选取两棵根结点权值最小的树作为左右子树构造一棵新的二叉树,且置新的二叉树的根结点的权值为左右子树根结点的权值之和.
3.在F中删除这两棵树,同时将新的二叉树加入F中.
4.重复2、3,直到F只含有一棵树为止.(得到哈夫曼树)
例:有4 个结点 a, b, c, d,权值分别为 7, 5, 2, 4,构造哈夫曼树。
根据给定的n个权值{w1,w2,…,wn}构成二叉树集合F={T1,T2,…,Tn},其中每棵二叉树Ti中只有一个带权为wi的根结点,其左右子树为空.
在F中选取两棵根结点权值最小的树作为左右子树构造一棵新的二叉树,且置新的二叉树的根结点的权值为左右子树根结点的权值之和.
在F中删除这两棵树,同时将新的二叉树加入F中.
重复,直到F只含有一棵树为止.(得到哈夫曼树)
关于哈夫曼树的注意点:
1、满二叉树不一定是哈夫曼树
2、哈夫曼树中权越大的叶子离根越近 (很好理解,WPL最小的二叉树)
3、具有相同带权结点的哈夫曼树不惟一
4、哈夫曼树的结点的度数为 0 或 2, 没有度为 1 的结点。
5、包含 n 个叶子结点的哈夫曼树中共有 2n – 1 个结点。
6、包含 n 棵树的森林要经过 n–1 次合并才能形成哈夫曼树,共产生 n–1 个新结点
再看一个例子:如权值集合W={7,19,2,6,32,3,21,10 }构造赫夫曼树的过程。
根据给定的n个权值{w1,w2,…,wn}构成二叉树集合F={T1,T2,…,Tn},其中每棵二叉树Ti中只有一个带权为wi的根结点,其左右子树为空.
在F中选取两棵根结点权值最小的树
作为左右子树构造一棵新的二叉树,置新的二叉树的根结点的权值为左右子树根结点的权值之和
在F中删除这两棵树,同时将新的二叉树加入F中.
重复,直到F只含有一棵树为止.(得到哈夫曼树)
在F中删除这两棵树,同时将新的二叉树加入F中.
构造完毕(哈夫曼树,最有二叉树),也就是最佳判定树
哈夫曼编码
哈夫曼树的应用很广,哈夫曼编码就是其在电讯通信中的应用之一。广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。在电讯通信业务中,通常用二进制编码来表示字母或其他字符,并用这样的编码来表示字符序列。
例:如果需传送的电文为 ‘ABACCDA’,它只用到四种字符,用两位二进制编码便可分辨。假设 A, B, C, D 的编码分别为 00, 01,10, 11,则上述电文便为 ‘00010010101100’(共 14 位),译码员按两位进行分组译码,便可恢复原来的电文。
能否使编码总长度更短呢?
实际应用中各字符的出现频度不相同,用短(长)编码表示频率大(小)的字符,使得编码序列的总长度最小,使所需总空间量最少
数据的最小冗余编码问题
在上例中,若假设 A, B, C, D 的编码分别为 0,00,1,01,则电文 ‘ABACCDA’ 便为 ‘000011010’(共 9 位),但此编码存在多义性:可译为: ‘BBCCDA’、‘ABACCDA’、‘AAAACCACA’ 等。
译码的惟一性问题
要求任一字符的编码都不能是另一字符编码的前缀,这种编码称为前缀编码(其实是非前缀码)。 在编码过程要考虑两个问题,数据的最小冗余编码问题,译码的惟一性问题,利用最优二叉树可以很好地解决上述两个问题
用二叉树设计二进制前缀编码
以电文中的字符作为叶子结点构造二叉树。然后将二叉树中结点引向其左孩子的分支标 ‘0’,引向其右孩子的分支标 ‘1’; 每个字符的编码即为从根到每个叶子的路径上得到的 0, 1 序列。如此得到的即为二进制前缀编码。
编码: A:0, C:10,B:110,D:111
任意一个叶子结点都不可能在其它叶子结点的路径中。
用哈夫曼树设计总长最短的二进制前缀编码
假设各个字符在电文中出现的次数(或频率)为 wi ,其编码长度为 li,电文中只有 n 种字符,则电文编码总长为:
设计电文总长最短的编码,设计哈夫曼树(以 n 种字符出现的频率作权),
由哈夫曼树得到的二进制前缀编码称为哈夫曼编码
例:如果需传送的电文为 ‘ABACCDA’,即:A, B, C, D
的频率(即权值)分别为 0.43, 0.14, 0.29, 0.14,试构造哈夫曼编码。
编码: A:0, C:10, B:110, D:111 。电文 ‘ABACCDA’ 便为 ‘0110010101110’(共 13 位)。
例:如果需传送的电文为 ‘ABCACCDAEAE’,即:A, B, C, D, E 的频率(即权值)分别为0.36, 0.1, 0.27, 0.1, 0.18,试构造哈夫曼编码。
编码: A:11,C:10,E:00,B:010,D:011 ,则电文 ‘ABCACCDAEAE’ 便为 ‘110101011101001111001100’(共 24 位,比 33 位短)。
译码
从哈夫曼树根开始,对待译码电文逐位取码。若编码是“0”,则向左走;若编码是“1”,则向右走,一旦到达叶子结点,则译出一个字符;再重新从根出发,直到电文结束。
电文为 “1101000” ,译文只能是“CAT”
哈夫曼编码算法的实现
由于哈夫曼树中没有度为1的结点,则一棵有n个叶子的哈夫曼树共有2×n-1个结点,可以用一个大小为2×n-1 的一维数组存放哈夫曼树的各个结点。 由于每个结点同时还包含其双亲信息和孩子结点的信息,所以构成一个静态三叉链表。
1 //haffman 树的结构 2 typedef struct 3 { 4 //叶子结点权值 5 unsigned int weight; 6 //指向双亲,和孩子结点的指针 7 unsigned int parent; 8 unsigned int lChild; 9 unsigned int rChild; 10 } Node, *HuffmanTree; 11 12 //动态分配数组,存储哈夫曼编码 13 typedef char *HuffmanCode; 14 15 //选择两个parent为0,且weight最小的结点s1和s2的方法实现 16 //n 为叶子结点的总数,s1和 s2两个指针参数指向要选取出来的两个权值最小的结点 17 void select(HuffmanTree *huffmanTree, int n, int *s1, int *s2) 18 { 19 //标记 i 20 int i = 0; 21 //记录最小权值 22 int min; 23 //遍历全部结点,找出单节点 24 for(i = 1; i <= n; i++) 25 { 26 //如果此结点的父亲没有,那么把结点号赋值给 min,跳出循环 27 if((*huffmanTree)[i].parent == 0) 28 { 29 min = i; 30 break; 31 } 32 } 33 //继续遍历全部结点,找出权值最小的单节点 34 for(i = 1; i <= n; i++) 35 { 36 //如果此结点的父亲为空,则进入 if 37 if((*huffmanTree)[i].parent == 0) 38 { 39 //如果此结点的权值比 min 结点的权值小,那么更新 min 结点,否则就是最开始的 min 40 if((*huffmanTree)[i].weight < (*huffmanTree)[min].weight) 41 { 42 min = i; 43 } 44 } 45 } 46 //找到了最小权值的结点,s1指向 47 *s1 = min; 48 //遍历全部结点 49 for(i = 1; i <= n; i++) 50 { 51 //找出下一个单节点,且没有被 s1指向,那么i 赋值给 min,跳出循环 52 if((*huffmanTree)[i].parent == 0 && i != (*s1)) 53 { 54 min = i; 55 break; 56 } 57 } 58 //继续遍历全部结点,找到权值最小的那一个 59 for(i = 1; i <= n; i++) 60 { 61 if((*huffmanTree)[i].parent == 0 && i != (*s1)) 62 { 63 //如果此结点的权值比 min 结点的权值小,那么更新 min 结点,否则就是最开始的 min 64 if((*huffmanTree)[i].weight < (*huffmanTree)[min].weight) 65 { 66 min = i; 67 } 68 } 69 } 70 //s2指针指向第二个权值最小的叶子结点 71 *s2 = min; 72 } 73 74 //创建哈夫曼树并求哈夫曼编码的算法如下,w数组存放已知的n个权值 75 void createHuffmanTree(HuffmanTree *huffmanTree, int w[], int n) 76 { 77 //m 为哈夫曼树总共的结点数,n 为叶子结点数 78 int m = 2 * n - 1; 79 //s1 和 s2 为两个当前结点里,要选取的最小权值的结点 80 int s1; 81 int s2; 82 //标记 83 int i; 84 // 创建哈夫曼树的结点所需的空间,m+1,代表其中包含一个头结点 85 *huffmanTree = (HuffmanTree)malloc((m + 1) * sizeof(Node)); 86 //1--n号存放叶子结点,初始化叶子结点,结构数组来初始化每个叶子结点,初始的时候看做一个个单个结点的二叉树 87 for(i = 1; i <= n; i++) 88 { 89 90 //其中叶子结点的权值是 w【n】数组来保存 91 (*huffmanTree)[i].weight = w[i]; 92 //初始化叶子结点(单个结点二叉树)的孩子和双亲,单个结点,也就是没有孩子和双亲,==0 93 (*huffmanTree)[i].lChild = 0; 94 (*huffmanTree)[i].parent = 0; 95 (*huffmanTree)[i].rChild = 0; 96 }// end of for 97 //非叶子结点的初始化 98 for(i = n + 1; i <= m; i++) 99 { 100 (*huffmanTree)[i].weight = 0; 101 (*huffmanTree)[i].lChild = 0; 102 (*huffmanTree)[i].parent = 0; 103 (*huffmanTree)[i].rChild = 0; 104 } 105 106 printf("\n HuffmanTree: \n"); 107 //创建非叶子结点,建哈夫曼树 108 for(i = n + 1; i <= m; i++) 109 { 110 //在(*huffmanTree)[1]~(*huffmanTree)[i-1]的范围内选择两个parent为0 111 //且weight最小的结点,其序号分别赋值给s1、s2 112 select(huffmanTree, i-1, &s1, &s2); 113 //选出的两个权值最小的叶子结点,组成一个新的二叉树,根为 i 结点 114 (*huffmanTree)[s1].parent = i; 115 (*huffmanTree)[s2].parent = i; 116 (*huffmanTree)[i].lChild = s1; 117 (*huffmanTree)[i].rChild = s2; 118 //新的结点 i 的权值 119 (*huffmanTree)[i].weight = (*huffmanTree)[s1].weight + (*huffmanTree)[s2].weight; 120 121 printf("%d (%d, %d)\n", (*huffmanTree)[i].weight, (*huffmanTree)[s1].weight, (*huffmanTree)[s2].weight); 122 } 123 124 printf("\n"); 125 } 126 127 //哈夫曼树建立完毕,从 n 个叶子结点到根,逆向求每个叶子结点对应的哈夫曼编码 128 void creatHuffmanCode(HuffmanTree *huffmanTree, HuffmanCode *huffmanCode, int n) 129 { 130 //指示biaoji 131 int i; 132 //编码的起始指针 133 int start; 134 //指向当前结点的父节点 135 int p; 136 //遍历 n 个叶子结点的指示标记 c 137 unsigned int c; 138 //分配n个编码的头指针 139 huffmanCode=(HuffmanCode *)malloc((n+1) * sizeof(char *)); 140 //分配求当前编码的工作空间 141 char *cd = (char *)malloc(n * sizeof(char)); 142 //从右向左逐位存放编码,首先存放编码结束符 143 cd[n-1] = ‘\0‘; 144 //求n个叶子结点对应的哈夫曼编码 145 for(i = 1; i <= n; i++) 146 { 147 //初始化编码起始指针 148 start = n - 1; 149 //从叶子到根结点求编码 150 for(c = i, p = (*huffmanTree)[i].parent; p != 0; c = p, p = (*huffmanTree)[p].parent) 151 { 152 if( (*huffmanTree)[p].lChild == c) 153 { 154 //从右到左的顺序编码入数组内 155 cd[--start] = ‘0‘; //左分支标0 156 } 157 else 158 { 159 cd[--start] = ‘1‘; //右分支标1 160 } 161 }// end of for 162 //为第i个编码分配空间 163 huffmanCode[i] = (char *)malloc((n - start) * sizeof(char)); 164 165 strcpy(huffmanCode[i], &cd[start]); 166 } 167 168 free(cd); 169 //打印编码序列 170 for(i = 1; i <= n; i++) 171 { 172 printf("HuffmanCode of %3d is %s\n", (*huffmanTree)[i].weight, huffmanCode[i]); 173 } 174 175 printf("\n"); 176 } 177 178 int main(void) 179 { 180 HuffmanTree HT; 181 HuffmanCode HC; 182 int *w,i,n,wei,m; 183 184 printf("\nn = " ); 185 186 scanf("%d",&n); 187 188 w=(int *)malloc((n+1)*sizeof(int)); 189 190 printf("\ninput the %d element‘s weight:\n",n); 191 192 for(i=1; i<=n; i++) 193 { 194 printf("%d: ",i); 195 fflush(stdin); 196 scanf("%d",&wei); 197 w[i]=wei; 198 } 199 200 createHuffmanTree(&HT, w, n); 201 creatHuffmanCode(&HT,&HC,n); 202 203 return 0; 204 }
补充:树的计数
已知先序序列和中序序列可确定一棵唯一的二叉树;
已知后序序列和中序序列可确定一棵唯一的二叉树;
已知先序序列和后序序列不能确定一棵唯一的二叉树。