矩阵的“特征值分解”和“奇异值分解”区别

在信号处理中经常碰到观测值的自相关矩阵,从物理意义上说,如果该观测值是由几个(如 K 个)相互统计独立的源信号线性混合而成,则该相关矩阵的秩或称维数就为 K,由这 K 个统计独立信号构成 K 维的线性空间,可由自相关矩阵最大 K 个特征值所对应的特征向量或观测值矩阵最大 K 个奇异值所对应的左奇异向量展成的子空间表示,通常称信号子空间,它的补空间称噪声子空间,两类子空间相互正交。理论上,由于噪声的存在,自相关矩阵是正定的,但实际应用时,由于样本数量有限,可能发生奇异,矩阵条件数无穷大,造成数值不稳定,并且自相关矩阵特征值是观测值矩阵奇异值的平方,数值动态范围大,因而子空间分析时常采用观测值矩阵奇异值分解,当然奇异值分解也可对奇异的自相关矩阵进行。在自相关矩阵正定时,特征值分解是奇异值分解的特例,且实现时相对简单些,实际中,常采用对角加载法保证自相关矩阵正定,对各特征子空间没有影响。在信号处理领域,两者都用于信号的特征分析,但两者的主要区别在于:奇异植分解主要用于数据矩阵,而特征植分解主要用于方型的相关矩阵 。

时间: 2024-11-04 08:32:20

矩阵的“特征值分解”和“奇异值分解”区别的相关文章

矩阵的特征值分解和奇异值分解

定理:(奇异值分解)设A为m*n阶复矩阵,则存在m阶酉阵U和n阶酉阵V,使得: A = U*S*V’ 其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A). 推论:设A为m*n阶实矩阵,则存在m阶正交阵U和n阶正交阵V,使得 A = U*S*V’ 其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A). 1.奇异值分解非常有用,对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V

特征值分解,奇异值分解(SVD)

特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式: 写成矩阵形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量. 2. 特征分解: 特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,正交矩阵是可逆的.Σ?=?diag(λ1,?λ2,

特征值分解和奇异值分解

特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生

矩阵的特征值分解

引入问题:给定一个对角线非零的上三角矩阵\(M\),求\(M^k\),满足\(M\)的阶\(\le 500\),\(k\le 10^9\). 对998244353取模. 一个显而易见的算法是矩阵快速幂,然而是\(O(N^3\log k)\)的,无法通过本题. 一开始我想,既然是上三角矩阵,那么特征多项式一定不难求,那么是用CH定理+FFT多项式取模啥搞搞? 然而我naive了. 这题我们可以把\(M\)特征值分解为\(Q^{-1}AQ\)形式,其中\(A\)是一个对角矩阵. 那么\(M^k=(Q

矩阵特征值分解与奇异值分解含义解析及应用

此文有一半转载自他出,主要在这进行个整理,具体内容文中都有相关的转载链接. 特征值与特征向量的几何意义 矩阵的乘法是什么,别只告诉我只是"前一个矩阵的行乘以后一个矩阵的列",还会一点的可能还会说"前一个矩阵的列数等于后一个矩阵的行数才能相乘",然而,这里却会和你说--那都是表象. 矩阵乘法真正的含义是变换,我们学<线性代数>一开始就学行变换列变换,那才是线代的核心--别会了点猫腻就忘了本--对,矩阵乘法 就是线性变换,若以其中一个向量A为中心,则B的作用

矩阵的SVD分解

转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD

【机器学习】从特征分解,奇异值分解到主成分分析

1.理解特征值,特征向量 一个对角阵\(A\),用它做变换时,自然坐标系的坐标轴不会发生旋转变化,而只会发生伸缩,且伸缩的比例就是\(A\)中对角线对应的数值大小. 对于普通矩阵\(A\)来说,是不是也可以找到这样的向量,使得经\(A\)变换后,不改变方向而只伸缩?答案是可以的,这种向量就是\(A\)的特征向量,而对应的伸缩比例就是对应的特征值. 特征值会有复数是为什么? 首先要知道,虚数单位\(i\)对应的是旋转\(90^o\),那么,如果特征值是复数,则对应的特征向量经矩阵\(A\)变换后将

矩阵分解之奇异值分解

矩阵分解之奇异值分解 引言 首先说矩阵,矩阵是一个难理解的数学描述,不管是在本科阶段的线性代数课上还是在研究生阶段的矩阵分析课上,都没有使我对矩阵产生什么好感,虽然考试也能过关,基本知识也能理解,但就是不知道有卵用.直到接触了机器学习相关算法论述时,发现好多的机器学习算法最终的描述都是通过矩阵分析相关知识推导而来,才知道了矩阵分析是非常有用的,但是到现在为止,还是没有什么好感.然后为什么要讲到奇异值分解,主要是在读<数学之美>中读到了采用奇异值分解解决文本分类问题的巧妙之处.首先在新闻分类中通

机器学习基础篇——矩阵特征值分解含义解析及应用

特征值与特征向量的几何意义: 矩阵的乘法是什么,别只告诉我只是"前一个矩阵的行乘以后一个矩阵的列",还会一点的可能还会说"前一个矩阵的列数等于后一个矩阵的行数才能相乘",然而,这里却会和你说--那都是表象. 矩阵乘法真正的含义是变换,我们学<线性代数>一开始就学行变换列变换,矩阵乘法就是线性变换,若以其中一个向量A为中心,则B的作用主要是使A发生如下变化: 伸缩 clf;     %用来清除图形的命令 A = [0, 1, 1, 0, 0;... 1,