《学习期货策略的筒子收藏了》国内量化交易平台

中低端平台适合投资者进行趋势、反趋势等对行情和交易逻辑要求不高的策略,高端交易平台适合机构投资者进行趋势、套利、对冲、高频等对行情和交易要求高、逻辑复杂度高的策略。

  从广义上讲,量化交易是指投资者利用计算机技术、金融工程建模等手段将自己的金融操作用很明确的方式去定义和描述,用以协助投资者进行投资决策,并且严格按照所设定的规则去执行交易策略(买卖、价格、数量等)的交易方式。

  按照数学模型的理念和对计算机技术的利用方式,量化交易可以进一步细分为自动化交易(Automatic Trading)、量化投资(Quantitative Investment)、程序化交易(Program Trading)、算法交易(Algorithm Trading)以及高频交易(High Frequency Trading)。这五种量化交易方式的侧重点各有不同,是量化交易技术发展到不同阶段的产物,也是不同量化交易用户群的不同交易方式。

  量化交易平台是指能分别满足上述五种交易方式的平台,要求其从交易系统的行情和基础数据、交易和执行、策略研发和运营三个主要方面既要做到大而全,也要做到深而精。这对目前大中型金融机构的IT以及实际运营部门是很大的挑战,同时也提供了发展机遇。

  目前的量化交易平台可以从开发语言、技术架构、系统架构、策略方向、交易方式等几个方面,分为中低端和高端量化交易平台。

  中低端量化交易平台

  中低端平台只支持复杂度不高的脚本语言实现策略逻辑,多数的实现只能在图表上加载技术指标进行自动化交易、程序化交易等量化交易方式。

  中低端平台一般采用的技术架构是投资者使用平台商提供的客户端软件,采用互联网接入方式连接平台商或者金融经纪公司提供的行情和基础数据服务器,投资者在本地运行的策略触发后,通过经纪公司的普通交易席位进行交易。由于技术架构的限制,行情、交易有一定的延时。

  受策略脚本解析和执行效率、技术架构的限制,中低端平台对于多品种、多周期、多账户、多交易市场、多策略、复杂金融工具包等复杂系统架构的支持都有一定的限制。一般的系统实现流程为:投资者的策略在本地接收市场数据后,根据策略简单计算的触发条件,进行简单的账户持仓、资金计算和管理,进而下达买卖方向、数量、价格等指令,进行自动交易。

  中低端平台适合投资者进行趋势、反趋势等对行情和交易逻辑要求不高的策略,是目前市场上个人投资者应用最多的一类大众化的量化交易平台。

  国内中低端量化交易平台

  国内应用的中低端量化交易平台主要有文华赢智程序化交易、交易开拓者、金字塔决策交易系统、达钱&multicharts、安翼金融终端等。

  1.文华赢智程序化交易平台

  文华赢智采用麦语言开发技术指标模型,产生买卖信号后驱动交易下单。在量化模型研发方面,赢智提供了国内股票和期货的全部品种多周期的时间序列历史行情数据和近期的TICK数据,同时提供了丰富的行情函数、账户和交易的部分函数和一些统计函数用于策略开发,还提供了丰富的策略回测报告项作为策略绩效评估的依据。在量化交易方面,赢智提供支持最多24个品种进行的多线程独立的程序化交易,同时使用下单精细化组件,实现了部分算法交易的功能。由于采用客户端的技术架构,虽然赢智实现了高频交易的功能模块,但是在实际应用中,高频交易建议托管在文华机房。现阶段,赢智以其程序化实现简单、性价比高等特点,在中低端量化交易平台中占有一定的优势。

  2.交易开拓者程序化交易平台

  交易开拓者(TB)采用语法类似Pascal的TBL语言开发策略模型,根据账户持仓状况和图表买卖信号驱动交易下单。在量化模型研发方面,TB提供了国内期货多周期的历史行情数据和近期的TICK数据;提供了较为全面的行情数据函数、账户和交易函数、统计函数用于策略开发;提供了丰富策略回测报告项作为策略绩效评估的依据。在量化交易方面,单个TB终端支持20-30个单品种的图表并发接收行情并交易,但由于客户端技术架构的限制,其对于高频和更复杂策略的支持不足。现阶段,TB市场推广做得较好,合作的期货公司较多,在中低端量化交易平台的市场占有率较高。

  3.金字塔决策交易系统

  金字塔决策交易系统(下称金字塔)采用VB脚本语言开发策略模型,使用较复杂的账户函数和交易函数进行资金管理,既可以使用图表买卖点,也可使用非图表的交易判断驱动交易下单。在量化模型研发方面,金字塔提供了国内股票和期货的历史行情数据和TICK数据,也可以使用外盘数据;提供了更为全面的行情数据函数、较多的账户和交易函数、统计函数用于策略开发,同时也支持外接统计数据库和专业的统计分析软件Lib库做扩展;提供了较为丰富策略回测报告项作为策略绩效评估的依据。在量化交易方面,除了支持图表驱动的程序化交易外,也可以进行篮子交易、算法交易和较复杂的对冲交易的实现,但是同样受客户端的技术架构限制,其对于高频交易、全市场策略的交易等更复杂的策略支持不够。现阶段,金字塔合作的期货公司逐渐增多,在中低端量化交易平台的市场占有率较高。

  4.达钱&multicharts自动化交易

  达钱&multicharts自动化交易系统(MC)采用power language开发策略模型,达钱提供行情和交易网关,multicharts实现策略开发和执行平台。在量化模型研发方面,由达钱提供的一段时间内的国内期货历史行情和TICK行情。MC承袭了TradeStation的丰富的函数库和策略库,以及便捷的开发特点,提供了更为完善的回测和绩效评价体系,为策略的研发提供了完善的评估。在量化交易方面,MC只支持程序化和自动化交易,对于高端的量化交易模式支持不够。由于MC进入国内不久,在中低端量化交易平台的市场占有率还不高。

  5.安翼金融终端程序化交易

  安翼金融终端(下称安翼)采用技术指标的通用脚本语言开发交易模型,进行图表驱动的自动化交易,是由某券商独立开发的进行国内股票和期货的自动化交易工具。目前安翼提供了国内股票和期货的历史行情,可以进行相对简单的图表交易和股票、期货的对冲交易,程序化交易工具免费使用。虽然安翼只能用该券商交易通道进行交易,但却标志着国内股票和期货的量化交易已经提升到一个全面发展阶段。

高端量化交易平台

  高端量化平台除了支持复杂脚本语言实现策略逻辑外,均支持直接使用C++、JAVA等开发语言实现复杂的策略逻辑,一般为了追求执行效率,不采用界面显示图表,而采用多进程、多线程方式进行自动化交易、程序化交易、算法交易,甚至为了追求极致,使用硬件技术进行高频交易等量化交易方式。

  高端交易平台通常采用的技术架构是使用服务器执行策略的架构,行情使用转发路径最少的极速、深度行情,交易通道采用专用、直连的交易通道进行交易。行情和交易的延时都要求尽可能最低。

  高端交易平台定位于资产管理,在系统架构上严格区分策略研发和策略运营执行两个阶段。对于策略研发阶段,需要多品种、多周期、多账户、多交易市场、多策略、复杂金融工程包的支持,以实现复杂的策略逻辑;对于策略运营执行阶段,系统架构要保证各种风控、应急处理、交易方式和策略的平稳有效执行。系统的实现流程除了满足交易本身的要求外,还要满足机构本身的业务流程和规范,以及监管层的要求。

  高端交易平台适合机构投资者进行趋势、套利、对冲、高频等对行情和交易要求高、逻辑复杂度高的策略。随着国内金融市场创新的提速,机构投资者对高端交易平台的需求和潜在需求呈快速上升趋势。

  国内高端量化交易平台

  国内应用的高端量化交易平台主要有Progress Apama、龙软DTS、国泰安量化投资平台、天软量化平台、飞创STP、易盛程序化交易、盛立SPT平台等。

  1.Progress Apama

  Apama采用EPL和JAVA语言开发或者定制策略模型,通过行情、资讯等驱动CEP引擎进行交易、风控等操作。在量化模型研发方面,Apama使用第三方的行情授权,提供了各市场行情接口和各种柜台交易接口的接入,可以接入国内股票和期货多周期的时间序列历史行情数据和TICK数据;提供了丰富的金融工具包进行复杂策略开发;提供了便捷的studio开发工具,可以进行复杂策略的快速开发和定制;提供了1万倍加速测试进行策略回测,可以方便地定制测试报告。在量化交易方面,Apama提供了150万笔/秒的交易并发处理能力,进行高频交易、算法交易。Apama高端的并发处理能力,使全市场的多品种并发套利、对冲等交易策略和实时风控策略可以高速执行。现阶段,Apama在国际投行的自营、资管、经纪业务中占有很大的市场份额。从2012年开始,Apama逐步拓展国内的业务,几家较大的证券和期货公司已经开始正式上线推广Apama和相关的量化交易应用。

  2.龙软DTS

  DTS采用LUA脚本语言开发策略模型,通过平台提供的历史和实时行情、基本资料数据、宏观数据的统计分析,实现投研和交易。在量化模型研发方面,DTS既可使用平台自有的数据源,也可以接入第三方数据源。DTS还提供了一些金融工具包,进行复杂策略开发、回测和绩效评价。在量化交易方面,DTS提供的可以扩展的服务器端技术架构,保证了策略的高并发和高速执行,其在程序化交易、量化交易、算法交易、对冲和套利交易方面都有实际应用。

  3.国泰安量化投资平台

  国泰安量化投资平台分为研究平台(QIA-Lite)和交易平台(QRC),采用matlab的toolbox的形式无缝兼容了matlab的研发环境,由交易平台实现策略交易。在量化模型研发方面,国泰安投研平台使用自有的行情源、基本面数据、高频数据、量化因子数据库,完全兼容matlab所有的函数,实现了模型的研发和回测。在量化交易方面,其支持了国内主流证券和期货的柜台,在股票和期货的程序化交易、算法交易等方面都有实际应用。

  4.天软量化研究和交易平台

  天软量化研究和交易平台采用天软特有的TSL语言开发策略模型,通过天软的交易网关,实现量化交易的执行。在量化模型研发方面,采用高性能数据仓库提供的历史和TICK行情、基础资料数据、宏观数据等数据源,同时提供了7000种开源的函数库,进行策略的研发、回测、绩效分析。在量化交易方面,其基本实现了自动交易、程序化交易、算法交易等量化交易方式。

  5.飞创STP

  飞创量化交易平台采用JAVA语言,通过可定制的模板开发策略模型,进行高频交易。STP通过统一的开发和资管运营平台,实现策略的研发、回测、风控和资管运营。由于使用了高速的柜台交易接口,其主要面向高频套利、程序化交易等交易模式的用户。

  6.易盛程序化交易平台

  易盛程序化交易既可采用类似Easy Language的语言开发策略模型,实现程序化交易和套利交易,也可以根据易盛柜台提供的行情和交易API,采用C++开发外接应用的方式,实现期货、股票的更复杂的量化交易。在量化模型研发方面,易盛程序化提供的EL开发模型,类似于中低端的量化交易平台,但在行情的速度、交易和账户函数的实时性和精细化处理方面,达到了高端量化交易平台的要求。在量化交易方面,易盛柜台的行情和交易速度具有一定的比较优势,量化交易平台支撑的应用主要是期货的程序化交易、自动交易、对冲和套利交易。

  7.盛立SPT平台

  盛立金融软件的SPT平台,采用C++语言和定制的策略开发模板进行策略研发,采用独立的运营和回测平台进行模拟和真实交易。虽然SPT平台在国内应用不多,但凭借其100万笔/秒的行情并发处理能力、交易的毫秒级别的延迟,在量化交易平台中引人注目。SPT提供了一些策略模板,可以很方便地实现程序化交易、套利和对冲交易、算法交易、高频交易等。

  现阶段,除了上述几个相对成熟且具有一定应用客户的高端量化交易平台外,也有较大金融机构使用像Sysbase CEP、StreamBase等高频中间件来构建量化交易平台。此外一些传统的交易柜台厂商如金仕达、恒生等,也在逐步推出高端量化交易平台。

时间: 2024-10-06 22:29:40

《学习期货策略的筒子收藏了》国内量化交易平台的相关文章

[转帖]可能是东半球最好的 Curl 学习指南,强烈建议收藏!

可能是东半球最好的 Curl 学习指南,强烈建议收藏! http://www.itpub.net/2019/09/30/3302/ 记得转帖过.. 简介 curl 是常用的命令行工具,用来请求 Web 服务器.它的名字就是客户端(client)的 URL 工具的意思. 它的功能非常强大,命令行参数多达几十种.如果熟练的话,完全可以取代 Postman 这一类的图形界面工具. 使用实例 本文介绍它的主要命令行参数,作为日常的参考,方便查阅.内容主要翻译自 <curl cookbook>.为了节约

通过组策略设置IE收藏夹和可信任站点

自从Win2008R2版本开始,组策略的IE Maintenance不见了,之前可以使用IEM做得很多事例如设置默认主页,可信任站点,收藏夹选项等功能都需要使用别的办法来实现了. 使用管理模板功能设置默认主页 定位到 用户设置->管理模板->Windows组件->Internet Explorer->禁止更改主页设置选项,点击已启用在文本框中输入需要锁定的主页即可完成设置 2.通过快捷方式添加IE收藏夹 定位到 用户设置->首选项->windows设置->快捷方式

期货策略:卖出涨幅较大期货合约,买入涨幅较小期货合约

策略想法:选择期货锌和期货铜2016年主力合约小时数据,如果买入 前一小时涨幅较大合约,假设A,买入前一小时涨幅较小合约,假设B,买入时实时保持两者价值相等(价格不相等,则买入份数不一样),如果A涨幅小于B涨幅,则平仓. 策略代码如下: import pandas as pdimport pyodbcfrom sqlalchemy import create_engineimport numpy as npfrom statistics import medianimport crash_on_

风险中性的深度学习选股策略

一.数据驱动型机器学习模型的问题 目前流行的机器学习方法,包括深度学习,大部分是数据驱动的方法,通过对训练集数据学习来提取知识.数据驱动型机器学习方法应用成功的前提是:从训练集数据中学习到的"知识"在样本外外推时依然适用. 当机器学习方法应用于投资领域时,一般是以历史数据作为训练集数据来训练模型,应用在未来的市场中.在深度学习多因子选股策略中,也是通过对历史股票行情数据的学习,来建立预测模型.此类机器学习方法在投资领域的应用是否会成功,取决于从历史数据中学习到的模型在未来的外推中是否有

Python爬虫学习路线,强烈建议收藏这十一条

(一)如何学习Python 学习Python大致可以分为以下几个阶段: 1.刚上手的时候肯定是先过一遍Python最基本的知识,比如说:变量.数据结构.语法等,基础过的很快,基本上1~2周时间就能过完了,我当时是在这儿看的基础:Python 简介 | 菜鸟教程 2.看完基础后,就是做一些小项目巩固基础,比方说:做一个终端计算器,如果实在找不到什么练手项目,可以在 Codecademy - learn to code, interactively, for free 上面进行练习. 如果时间充裕的

&lt;深度学习优化策略-3&gt; 深度学习网络加速器Weight Normalization_WN

前面我们学习过深度学习中用于加速网络训练.提升网络泛化能力的两种策略:Batch Normalization(Batch Normalization)和Layer Normalization(LN).今天讨论另一种与它们类似的策略:Weight Normalization(Weight Normalization).Weight Normalization是Batch Normalization的一种变体,与Batch Normalization最大不同点:对神经网络的权值向量W进行参数重写Re

学习网站/实用工具,收藏的快搜网站,想找什么都有!!!

作者 | Jeskson 来源 | 达达前端小酒馆 首先要感谢大家对小编的支持,同时特别感谢支持我的朋友和家人,也感谢那些加"星标"的朋友们,从一开始接触计算机时,我也是个小白,从无到有,接触过后,发现计算机也就是电脑对我们的作用真的是很强大,我也十分欢喜,不过也有很多的万般无奈,因为,我通过互联网发现了"大佬"级别的人物时,压力不是一般的大. 对于网站上的资源,也就是学习资源很多,多到数也数不清呢?就连我的收藏也是饱满的状态,无从下手的,慌乱的状态,不知道这么多的

java SSH框架详解(面试和学习都是最好的收藏资料)

Java—SSH(MVC)1. 谈谈你mvc的理解MVC是Model—View—Controler的简称.即模型—视图—控制器.MVC是一种设计模式,它强制性的把应用程序的输入.处理和输出分开.MVC中的模型.视图.控制器它们分别担负着不同的任务.视图: 视图是用户看到并与之交互的界面.视图向用户显示相关的数据,并接受用户的输入.视图不进行任何业务逻辑处理.模型: 模型表示业务数据和业务处理.相当于JavaBean.一个模型能为多个视图提供数据.这提高了应用程序的重用性控制器: 当用户单击Web

JAVA学习笔记--策略设计模式与适配器模式

一.策略设计模式 创建一个能够根据所传递对象的不同而具有不同行为的方法被称为策略设计模式:这类方法包含所要执行的算法中固定不变的部分,而"策略"包含变化的部分.策略就是传递进去的参数对象,它包含要执行的代码. 这种设计模式将算法分别独立封装起来,然后将其当做参数传递给方法从而让方法产生不同的行为,不同的算法可以进行替换(就像给方法不同的实参).我们可以知道,在策略设计模式中有三个部分:策略.策略引用.接收策略引用的方法(这是笔者自己根据理解给出的名词,并没有查询有没有这些术语).下面通