Spark Streaming 官网上提到的几点调优

总的来说,需要考虑以下两点:

1. 有效地运用集群资源去减少每个批次处理的时间

2. 正确的设置batch size,以使得处理速度能跟上接收速度

一.  为了减少处理时间,主要有以下几个优化点:

1. 接收数据的并行度。

每个InputDStream只创建一个Receiver用于接收数据,如果接收数据是系统的瓶颈,可以创建多个InputDStream。配置不同的InputDStream读取数据源的不同分区。比如原先用一个InputDStream读取Kafka的两个topic的数据,可以拆分成两个InputDStream读取不同的Topic。处理时,把两个InputDStream收到的数据合并成一个。

int numStreams = 5;
List<JavaPairDStream<String, String>> kafkaStreams = new ArrayList<>(numStreams);
for (int i = 0; i < numStreams; i++) {
  kafkaStreams.add(KafkaUtils.createStream(...));
}
JavaPairDStream<String, String> unifiedStream = streamingContext.union(kafkaStreams.get(0), kafkaStreams.subList(1, kafkaStreams.size()));
unifiedStream.print();

2.  阻塞间隔

有一个配置参数:spark.streaming.blockInterval,它的意思是每间隔多少秒后,Spark才把接收到的数据组成数据块存到Spark中。官网推荐的最小值是50ms,默认值200ms。假设实例化InputDStream时设置的Duration(batch interval)为1秒(1000ms),那么任务执行时,总共有 1000 / 200 = 5 个block,每个block将对应一个task。如果task的数量少于每台机器配置的core的数量,则说明资源没有被很好的利用。应减少 spark.streaming.blockInterval 或增加batch interval。

注意:官网并没有说要使得task的数量和core的数量一致。能想到两个的原因:(1)receiver也会占用core (2)driver也会占用core

3. 相对于1中所说的增加receiver,一个可供选择的方案是通过调用 inputStream.repartition(<number of partitions>) 对inputDStream的数据进行repartition。这将使接收到的数据分布到指定数量的其它机器上,以供进一步处理。

4. 处理数据的并行度

对于reduceByKey, reduceByKeyAndWindow,Join 等shuffle操作,默认的并行度由 spark.default.parallelism 控制。可以在shuffle操作中设置partition的数量来覆盖默认值。

5. 数据序列化

在Spark Streaming中,有两类数据会被序列化:

5.1 输入数据。默认情况下,输入数据会以StorageLevel.MEMORY_AND_DISK_SER_2 的方式存储在 executor 的内存中。Receiver会反序列化接收到数据,然后再把它序列化成Spark的序列化格式。这显然会有花销。

5.2 持久化Streaming操作产生的RDD。某些windows操作会持久化需要进行多次处理的数据到内存中,默认的存储方式是StorageLevel.MEMORY_ONLY_SER

以上两种情况,使用Kyro序列化机制来减少CPU和内存的花销。

6. 启动Task的开销

如果每秒启动的task较多(比如:50个或更高),那么发送task去workers的开销会较大。通过以下方式减少这个开销:以Standalone模式或 coarse-grained Mesos 模式运行Spark程序。详见: Running on Mesos guide

7. 设置正确的Batch Interval

每个时间间隔提交的job应该能处理完这个时间间隔内收到的数据。可以通过Web UI 去查看批处理的时间是否小于interval

二. 内存调优

Spark Streaming应用程序需要的内存依赖于程序中用到的transformation。比如,你使用了window操作,想要处理最后10分钟的数据,这就要求内存能保存这10分钟的所有数据。虽然默认情况下是,内存存不下后会存到磁盘,但是这样的会比较慢。建议尽量加大内存。

垃圾回收也是需要考虑的一方面。可以考虑以下几点来减少GC的开销:

1. 接收的数据和RDD会默认序列化并持久化。开启Kyro序列化机制可减少内存的使用。 设置spark.rdd.compress为TRUE,可减少CPU时间

2. 清除旧的数据。Spark Streaming默认会做这件事。

3. 使用CMS 垃圾收集器。driver端使用 --driver-java-options ( spark-submit的时候)。executor端, 使用spark.executor.extraJavaOptions 这个配置

4. 尝试以下2点:1. 使用OFF_HEAP 存储级别  2. 增加executor,减少heap size

总的来说,需要记住以下几点:

1. 一个InputDSteam对应一个receiver, receiver运行在executor上,因此会占用一个core。Receivers以轮询的方式分配到executors中。

2. 每隔block interval的时间就会生成一个block,所以每个batch interval的时间会生成 batch interval / block interval 个block,每个block对应一个task。block会被BlockManager分发到不同的executor上

3. 在batchInterval内,在driver端生成一个RDD,在此期间内生成的blocks是这个RDD的partitions。每个partition是一个task。

4. 较大的blockInterval 意味着较大的data block。较大的 spark.locality.wait 将增加 block 在本地处理的机会。寻找这两个值的平衡点,以使较大的block在本地处理。

5. 可以使用 inputDstream.repartition(n) 来替代设置 batchInterval 和 blockInterval 来获取较好的并行度。但这会产生shuffle的花销。

6. 一次只能处理一个Job。所以当有多个 InputDStream 时,需要先Union两个 InputDStream。

7. Receiver暂时没有暂停的方法。因此当job的处理时间大于 batchInterval 时,receiver 的内存使用将会持续增加,最终导致 BlockNotFoundException 。使用spark.streaming.receiver.maxRate 可以限制 receiver的接收速度

时间: 2024-09-30 09:58:57

Spark Streaming 官网上提到的几点调优的相关文章

Spark 官网提到的几点调优

1. 数据序列化 默认使用的是Java自带的序列化机制.优点是可以处理所有实现了java.io.Serializable 的类.但是Java 序列化比较慢. 可以使用Kryo序列化机制,通常比Java 序列化机制性能高10倍.但是并不支持所有实现了java.io.Serializable 的类.使用 conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") 开启Kryo序列化

Spark Streaming官方文档学习--下

Accumulators and Broadcast Variables 这些不能从checkpoint重新恢复 如果想启动检查点的时候使用这两个变量,就需要创建这写变量的懒惰的singleton实例. 下面是一个例子: def getWordBlacklist(sparkContext): if ('wordBlacklist' not in globals()): globals()['wordBlacklist'] = sparkContext.broadcast(["a", &

Spark日志分析项目Demo(9)--常规性能调优

一 分配更多资源 分配更多资源:性能调优的王道,就是增加和分配更多的资源,性能和速度上的提升,是显而易见的:基本上,在一定范围之内,增加资源与性能的提升,是成正比的:写完了一个复杂的spark作业之后,进行性能调优的时候,首先第一步,我觉得,就是要来调节最优的资源配置:在这个基础之上,如果说你的spark作业,能够分配的资源达到了你的能力范围的顶端之后,无法再分配更多的资源了,公司资源有限:那么才是考虑去做后面的这些性能调优的点. 问题: 1.分配哪些资源? 2.在哪里分配这些资源? 3.为什么

spark新能优化之shuffle新能调优

shuffle调优参数 new SparkConf().set("spark.shuffle.consolidateFiles", "true") spark.shuffle.consolidateFiles:是否开启shuffle block file的合并,默认为false//设置从maPartitionRDD上面到到下个stage的resultTask时数据的传输快可以聚合(具体原理可以看下shuffle的原理设置和没设置的区别)spark.reducer.m

Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十二)Spark Streaming接收流数据及使用窗口函数

官网文档:<http://spark.apache.org/docs/latest/streaming-programming-guide.html#a-quick-example> Spark Streaming官网的例子reduceByKeyAndWindow 简单的介绍了spark streaming接收socket流的数据,并把接收到的数据进行windows窗口函数对数据进行批量处理. import java.util.Arrays; import org.apache.spark.S

spark性能调优:开发调优

在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spark作业进行合理的调优,Spark作业的执行速度可能会很慢,这样就完全体现不出Spark作为一种快速大数据计算引擎的优势来.因此,想要用好Spark,就必须对其进行合理的性能优化. Spark的

spark记录(6)SparkCore的调优之开发调优

摘抄自:https://www.cnblogs.com/qingyunzong/p/8946637.html 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执

Spark学习之路 (八)SparkCore的调优之开发调优

讨论QQ:1586558083 目录 调优概述 原则一:避免创建重复的RDD 一个简单的例子 原则二:尽可能复用同一个RDD 一个简单的例子 原则三:对多次使用的RDD进行持久化 对多次使用的RDD进行持久化的代码示例 Spark的持久化级别 如何选择一种最合适的持久化策略 原则四:尽量避免使用shuffle类算子 Broadcast与map进行join代码示例 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 使用reduceByKey/aggregateByK

Spark学习之路 (八)SparkCore的调优之开发调优[转]

前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团?大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spar