一篇文章让你明白python的装饰器

在看闭包问题之前先来看看关于python中作用域的问题

变量作用域

对于上述代码中出现错误,肯定没什么疑问了,毕竟b并没有定义和赋值,当我们把代码更改如下后:

再看一个例子:

首先这个错误已经非常明显:说在赋值之前引用了局部变量b

可能很多人觉得会打印10然后打印6,其实这里就是涉及到变量作用域的问题
当Python编译函数的的定义体的时候,它判断b是局部变量,毕竟在函数中有b = 9表示给b赋值了,所以python会从本地环境获取b,当我们调用方法执行的时候,定义体会获取并打印变量a的值,但是当尝试获取b的值的时候发现b没有绑定值,所以要想让上述代码运行还可以把b设置为全局变量,或者把b赋值放到调用之前

函数对象的作用域

python中一切皆对象,同其他对象一样,函数对象也有其使用的范围即函数对象的作用域。
在python中我们通过def定义函数,函数对象的作用域与def所在的层级相同,
通过下面代码进行理解:

def func1():
    def func2(x):
        return 2*x
    print(func2(5))

func1()
print(func2(5))

这个例子中我们在def func1函数内可以调用fun2,但是我们在外面是无法调用到func2的,所以结果为看到如下:

闭包

关于闭包主要有下面两种说法:

  • 闭包是符合一定条件的函数,定义为:闭包是在其词法上下文中引用了自由变量的函数
  • 闭包是由函数与其相关的引用环境组合而成的实体。定义为:在实现绑定时,需要创建一个能显示表示引用环境的东西,并将它与相关的子程序捆绑在一起,这样捆绑起来的整体称为闭包

个人觉得第二种说法更准确,闭包只是在形式上表现像函数,实际不是函数。
我们对函数的定义是:一些可执行的代码,这些代码在函数定义后就确定了,不会在执行时发生变化,所以一个函数只有一个实例。

闭包在运行的时候可以有多个实例,不同的引用环境和相同的环境组合可以产生不同的实例。

这里有一个词:引用环境,其实引用环境就是在执行运行的某个时间点,所有处于活跃状态的变量所组成的集合,这里的变量是指变量的名字和其所代表的对象之间的联系。

可以使用闭包语言的特点:

  • 函数可以作为另外一个函数的返回值或者参数,还可以作为一个变量的值。
  • 函数可以嵌套使用

而认为闭包是函数的有一句话是:
闭包是指延伸了作用域的函数,其中包含函数定义体中引用。但是不在定义体中定义的非全局变量。

上面这种说法个人觉得也是一种理解方式

相信看了这些概念也还是不好理解,还是通过下面例子更好理解:

先实现一种计算平均值的方法:

从结果我们可以看出这里保存了每次的历史值
换一种方法实现:

实现了第一种相同的效果,对这种方法分析:
通常我们会认为我们调用avg(10)的时候make_averager函数已经返回了,而它的本地作用域也一去不复返,但这里其实series是自由变量,是指未在本地作用域绑定的变量
我们可以通过print(dir(avg)),看到如下结果:

其实这里面保存着均布变量和自由变量的名称,我们可以通过下面方法查看:

eries的绑定在返回的avg函数的__closure__属性中这或许就是有的人会认为闭包一种函数。闭包会保留定义函数时存在的自由变量的绑定,这样调用函数时虽然定义作用域不能用了,但是仍能使用那些绑定

关于nonlocal

刚开始了解闭包之后,如果尝试使用这种编程方式容易出现以下错误使用例子:

def make_averager():
    count = 0
    total = 0

    def averager(new_value):
        count += 1
        total += new_value
        return total / count
    return averager

先来看一下错误提示:

这个例子中和我们上面使用的不同之处是:这里的count和total是数字,是不可变类型,而之前的例子中series是一个列表是可变类型
所以这里重新回到了最开始说的作用域问题了,当我们在averager中使用
count += 1的时候其实就是count = count + 1,这样就是在averager函数定义体中对count进行赋值,count就变成了局部变量。

问题小结:当时数字,字符串,元组等不可变类型时,只能读取不能更新,如果使用类似count += 1就会隐式的把count变成局部变量,所以开始例子中使用series,我们后面的操作是append并且列表还是可变对象

不过python3引入了一个新的关键词nonlocal,通过它把变量标记为自由变量,这样我们把上面这个错误的例子简单更改:

def make_averager():
    count = 0
    total = 0

    def averager(new_value):
        nonlocal count,total
        count += 1
        total += new_value
        return total / count
    return averager

到这里装饰器的前奏就说完了,下面就是装饰器,我个人觉得装饰器只是闭包的一种应用,闭包在很多情况下都是一种非常好的变成技巧

装饰器

关于装饰器本来是想重新整理一下,看了自己之前整理的博客,已经挺详细的,就把连接直接放这里了
http://www.pythonsite.com/?p=113

时间: 2024-11-05 21:35:48

一篇文章让你明白python的装饰器的相关文章

【转】详解Python的装饰器

原文链接:http://python.jobbole.com/86717/ Python中的装饰器是你进入Python大门的一道坎,不管你跨不跨过去它都在那里. 为什么需要装饰器 我们假设你的程序实现了say_hello()和say_goodbye()两个函数. def say_hello(): print "hello!" def say_goodbye(): print "hello!" # bug here if __name__ == '__main__':

详解Python的装饰器

Python中的装饰器是你进入Python大门的一道坎,不管你跨不跨过去它都在那里. 为什么需要装饰器 我们假设你的程序实现了say_hello()和say_goodbye()两个函数. def say_hello(): print "hello!" def say_goodbye(): print "hello!" # bug here if __name__ == '__main__': say_hello() say_goodbye() 但是在实际调用中,我们

进阶Python:装饰器 全面详解

进阶Python:装饰器 前言 前段时间我发了一篇讲解Python调试工具PySnooper的文章,在那篇文章开始一部分我简单的介绍了一下装饰器,文章发出之后有几位同学说"终于了解装饰器的用法了",可见有不少同学对装饰器感兴趣.但是那篇文章主要的目的是在介绍PySnooper,所以没有太深入的展开讲解装饰器,于是在这里就详细的介绍一些装饰器的使用. 装饰器是Python中非常重要的一个概念,如果你会Python的基本语法,你可以写出能够跑通的代码,但是如果你想写出高效.简洁的代码,我认

尝试自己的Perl语言的包 TCP协议的再包装起到类似python语言装饰器的效果

#!/usr/bin/perl # Filename: BuildSocketTCP.pm # #   Copyright 2012 Axxeo GmbH #   Licensed under the Apache License, Version 2.0 (the "License"); #   you may not use this file except in compliance with the License. #   You may obtain a copy of t

尝试自己的Perl语言的包 UDP协议的再包装起到类似python语言装饰器的效果

#!/usr/bin/perl # Filename: BuildSocketUDP.pm # #   Copyright 2012 Axxeo GmbH #   Licensed under the Apache License, Version 2.0 (the "License"); #   you may not use this file except in compliance with the License. #   You may obtain a copy of t

python函数装饰器

学习装饰器前提需要了解高阶函数,函数嵌套,函数闭包 python函数装饰器,顾名思义就是装饰函数,为函数添加新功能的的一种方式. 为什么要使用装饰器呢? 因为函数在运行时,如果不使用装饰器对函数进行功能添加,需要修改函数源代码,这样修改无疑会增加程序的冗余和复杂性,也不便于程序员对其进行修改.使用装饰器,可以在不改变函数源代码和调用方式的前提下,使用语法糖@装饰器,对函数功能进行添加. 装饰器本质上就是一个函数. 我们使用一个简单的例子来实现: import time #这是一个装饰器函数名为t

Python之装饰器、迭代器和生成器

在学习python的时候,三大“名器”对没有其他语言编程经验的人来说,应该算是一个小难点,本次博客就博主自己对装饰器.迭代器和生成器理解进行解释. 为什么要使用装饰器 什么是装饰器?“装饰”从字面意思来谁就是对特定的建筑物内按照一定的思路和风格进行美化的一种行为,所谓“器”就是工具,对于python来说装饰器就是能够在不修改原始的代码情况下给其添加新的功能,比如一款软件上线之后,我们需要在不修改源代码和不修改被调用的方式的情况下还能为期添加新的功能,在python种就可以用装饰器来实现,同样在写

python之装饰器 实例

=====================================写法1========================== import time def timer(func):     def deco():         start_time = time.time()         func()         stop_time = time.time()         print('the func run time is %s' %(stop_time - star

如何用python的装饰器定义一个像C++一样的强类型函数

Python作为一个动态的脚本语言,其函数在定义时是不需要指出参数的类型,也不需要指出函数是否有返回值.本文将介绍如何使用python的装饰器来定义一个像C++那样的强类型函数.接下去,先介绍python3中关于函数的定义. 0. python3中的函数定义 举个例子来说吧,比如如下的函数定义: 1 def fun(a:int, b=1, *c, d, e=2, **f) -> str: 2 pass 这里主要是说几点与python2中不同的点. 1)分号后面表示参数的annotation,这个