在这一篇文章中,将主要介绍如何将DSP上采集到的速度转化为Odom,即左右轮速度转化为机器人离起点的x,y坐标和机器人的朝向角yaw,让move_base可以订阅到这个信息并做出相应的路径规划。在wiki论坛上有一个很详细的例程是关于如何发布Odometry信息的,希望大家先仔细阅读。在这个程序里,它把转化好的Odom信息发布到了两个地方,第一个是广播了tf关系,即每次机器人移动以后,/odom坐标系和/base_linke的关系,(关于为什么要发布这tf关系,见第三篇博文);第二个是将消息发布到odom topic上。这两个东西都将是move_base需要的。
但是它的那段演示程序里,将机器人x轴方向的速度,y轴方向速度,以及旋转速度设置为常数了,实际中肯定是变化的。因此我们只需要将两轮的速度转化为x轴的速度(即前进方向的速度)和绕z轴旋转的速度,再套用到那个程序里去,就能发布机器人的位姿给move_base了。
下面这段程序就是我的转换方法:
def speed_to_odom(self, Lspeed = 0, Rspeed = 0): delta_speed = Rspeed - Lspeed if delta_speed < 0: theta_to_speed = 0.0077 #右转系数 else: theta_to_speed = 0.0076 #左转系数 #*比例系数是将单位时间内的左右轮位移差(速度差)转化旋转的角度增量,再除以20ms,得到旋转角速度 v_th = delta_speed * theta_to_speed / 0.02 v_x = (Rspeed + Lspeed)/2.0 v_y = 0.0 return v_x, v_y, v_th #返回x,y轴速度,以及旋转速度th
程序中20ms为速度采样的周期。在这个转换关系,我是把y轴速度设为0,左右轮速度的平均就是前进速度(即x轴速度),左右轮速度的差转化为旋转速度。请注意:将y轴速度设为0这种转换时可行,也就是假定20ms内,机器人没有在垂直于轮子的方向上发生位移。
将左右轮速度转化完以后,就可以用官网的例程发布Odom消息了。
下面总结下思路,再贴出这段的完整源程序。在我的程序中,也就是前面所说的中间通信层程序,首先用pyserial监听串口,一旦收到左右轮的速度信息,马上将左右轮的速度信息转化为x轴方向的前进速度,和绕z轴的旋转速度,然后将这个信息发布到一个主题上(我程序中为car_speed主题)。对官网那段程序进行改进,订阅这个car_speed消息,一旦收到各轴速度,由其速度转化机器人的坐标以及航向角yaw,这些信息作为Odom topic发布。
首先看如何将左右轮速度值转变为前进速度linear.x和转向速度angular.z的程序,有了linear.x和angular.z以后再来考虑发布odom:
#!/usr/bin/env python # -*- coding: utf-8 -*- import roslib;roslib.load_manifest(‘beginner_tutorials‘) import rospy from beginner_tutorials.msg import Num, carOdom #自定义的消息 from geometry_msgs.msg import Twist import serial_lisenning as COM_ctr #自己写的串口监听模块 import glob from math import sqrt, atan2, pow class bluetooth_cmd(): def __init__(self): rospy.init_node(‘robot_driver‘, anonymous=True) def callback(self,msg ): cmd_twist_rotation = msg.angular.z # cmd_twist_x = msg.linear.x * 10.0 cmd_twist_y = msg.linear.y * 10.0 wheelspeed = self.odom_to_speed(cmd_twist_x, cmd_twist_y,cmd_twist_rotation) print ‘msg:‘, msg print wheelspeed self.blue_tooth_send([wheelspeed[0], self.speed_kp, self.speed_ki, wheelspeed[1]]) def odom_to_speed(self, cmd_twist_x =0, cmd_twist_y=0,cmd_twist_rotation=0): cent_speed = sqrt(pow(cmd_twist_x, 2) + pow(cmd_twist_y, 2)) yawrate2 = self.yawrate_to_speed(cmd_twist_rotation) Lwheelspeed = cent_speed - yawrate2/2 Rwheelspeed = cent_speed + yawrate2/2 return Lwheelspeed, Rwheelspeed def yawrate_to_speed(self, yawrate): if yawrate > 0: theta_to_speed = 0.0077 #右转系数 else: theta_to_speed = 0.0076 #左转系数 x = (yawrate * 0.02) / theta_to_speed #yawrate :rad/s *0.02表示 20ms内应该转多少弧度,/0.0076是把 要转的弧度转化为左右轮速度差 return x def talker(self): self.rec_data = COM_ctr.SerialData( datalen = 2) #启动监听COM 线程 allport = glob.glob(‘/dev/ttyU*‘) port = allport[0] baud = 115200 openflag = self.rec_data.open_com(port, baud) rospy.Subscriber("/cmd_vel", Twist, self.callback)#订阅move_base发出的控制指令 pub = rospy.Publisher(‘car_speed‘, carOdom) pub_wheel = rospy.Publisher(‘wheel_speed‘, Num) #左右轮速度 r = rospy.Rate(500) # 100hz Lwheelpwm= 0 sumL = 0 sumR = 0 while not rospy.is_shutdown(): all_data = [] if self.rec_data.com_isopen(): all_data = self.rec_data.next() #接收的数据组 if all_data != []: #如果没收到数据,不执行下面的 wheelspeed = Num() #自己的消息 car_speed = carOdom() leftspeed = all_data[0][0] rightspeed = all_data[1][0] wheelspeed.leftspeed = leftspeed wheelspeed.rightspeed = rightspeed #左右轮速度转化为机器人x轴前进速度和绕Z轴旋转的速度 resluts = self.speed_to_odom(leftspeed, rightspeed) car_speed.x = resluts[0] car_speed.y = resluts[1] car_speed.vth = resluts[2] pub.publish(car_speed) pub_wheel.publish(wheelspeed) r.sleep() if openflag: self.rec_data.close_lisen_com() def speed_to_odom(self, Lspeed = 0, Rspeed = 0): delta_speed = Rspeed - Lspeed if delta_speed < 0: theta_to_speed = 0.0077 #右转系数 else: theta_to_speed = 0.0076 #左转系数 v_th = delta_speed * theta_to_speed / 0.02 # first : transform delta_speed to delta_theta . second: dived by delta_t (20ms), get the yawrate v_x = (Rspeed + Lspeed)/10.0/2.0 # Lspeed : dm/s -- > m/s so need to /10.0 v_y = 0.0 return v_x, v_y, v_th def blue_tooth_send(self, data = [], head = ‘HY‘): if data !=[] and self.rec_data.com_isopen(): self.rec_data.send_data(data, head) #绕中心轴旋转 设定为0 # print data if __name__ == ‘__main__‘: try: car_cmd = bluetooth_cmd() car_cmd.talker() except rospy.ROSInterruptException: pass
注意这段程序里用了自己定义的msg:Num 和 carOdom。这两个msg文件存放于beginner_tutorials/msg文件夹下。如果不知道怎么创建msg,可以看官网的教程或者我的另一篇博文。
这里贴出我定义的消息的内容:
Num.msg:
float32 leftspeed float32 rightspeed
carOdom.msg:
float32 x float32 y float32 vth
上面程序发布的/car_speed topic就包含了车子的linear.x和angular.z,运行这个节点以后,我们可以使用rostopic指令来监控这个主题发布的频率:
rostopic hz /car_speed
看主题发布的频率是否和期待的一致。
现在已经将左右轮速度转化为x轴速度和旋转速度了,下面贴出我改进的官网教程代码,教大家如何发布Odom信息和odom与base_link之间的tf转换关系。官网教程里的vx,vy,vth为常数,我们这里先订阅自己上段程序发布的car_speed主题,也就是订阅机器人实时的前进速度x和旋转速度。把官网程序由常数改为机器人实际速度就行了。下面程序为C++写的,在beginner_tutorials/src文件夹下创建空白文档,命名为your_filename.cpp,把下列代码复制进去:
#include <ros/ros.h> #include <tf/transform_broadcaster.h> #include <nav_msgs/Odometry.h> #include <beginner_tutorials/carOdom.h> //goal:subscribe the car_speed, then send them class SubscribeAndPublish { public: SubscribeAndPublish() { x_ = 0.0; y_ = 0.0; th_ = 0.0; vx_ = 0.0; vy_ = 0.0; vth_ = 0.0; current_time_ = ros::Time::now(); last_time_ = ros::Time::now(); //Topic you want to publish pub_ = n_.advertise<nav_msgs::Odometry>("odom", 1); //Topic you want to subscribe sub_ = n_.subscribe("car_speed", 1, &SubscribeAndPublish::callback, this); } void callback(const beginner_tutorials::carOdom::ConstPtr& input) { //nav_msgs::Odometry output; //.... do something with the input and generate the output... current_time_ = ros::Time::now(); vx_ = input->x; vy_ = input->y; vth_ = input->vth; //compute odometry in a typical way given the velocities of the robot //double dt = (current_time - last_time).toSec(); double dt = 0.02; double delta_x = (vx_ * cos(th_) - vy_ * sin(th_)) * dt; double delta_y = (vx_ * sin(th_) + vy_ * cos(th_)) * dt; double delta_th = vth_ * dt; x_ += delta_x; y_ += delta_y; th_ += delta_th; //since all odometry is 6DOF we‘ll need a quaternion created from yaw geometry_msgs::Quaternion odom_quat = tf::createQuaternionMsgFromYaw(th_); //first, we‘ll publish the transform over tf geometry_msgs::TransformStamped odom_trans; odom_trans.header.stamp = current_time_; odom_trans.header.frame_id = "odom"; odom_trans.child_frame_id = "base_link"; odom_trans.transform.translation.x = x_; odom_trans.transform.translation.y = y_; odom_trans.transform.translation.z = 0.0; odom_trans.transform.rotation = odom_quat; //send the transform odom_broadcaster_.sendTransform(odom_trans); //next, we‘ll publish the odometry message over ROS nav_msgs::Odometry odom; odom.header.stamp = current_time_; odom.header.frame_id = "odom"; //set the position odom.pose.pose.position.x = x_; odom.pose.pose.position.y = y_; odom.pose.pose.position.z = 0.0; odom.pose.pose.orientation = odom_quat; //set the velocity odom.child_frame_id = "base_link"; odom.twist.twist.linear.x = vx_; odom.twist.twist.linear.y = vy_; odom.twist.twist.angular.z = vth_; //publish the message pub_.publish(odom); last_time_ = current_time_; } private: // ros::NodeHandle n_; ros::Publisher pub_; ros::Subscriber sub_; ros::Time current_time_, last_time_; tf::TransformBroadcaster odom_broadcaster_; double x_ ; double y_ ; double th_ ; double vx_; double vy_ ; double vth_ ; };//End of class SubscribeAndPublish int main(int argc, char **argv) { //Initiate ROS ros::init(argc, argv, "odometry_publisher"); //Create an object of class SubscribeAndPublish that will take care of everything SubscribeAndPublish SAPObject; ros::spin(); return 0; }
这段程序首先订阅car_speed这个主题,一旦收到机器人的x轴速度和转向速度,就调用callback去发布消息,让move_base可以订阅到。
注意:这段程序要能运行,必须在你的beginner_tutorials这个包里添加对tf,nav_msgs的依赖。
<depend package="tf"/> <depend package="nav_msgs"/>
要添加对这两个包的依赖,需要修改在package.xml和CMakeLists.txt进行修改:
在package.xml中添加:
<build_depend>tf</build_depend> <build_depend>nav_msgs</build_depend>
和
<run_depend>tf</run_depend> <run_depend>nav_msgs</run_depend>
然后在CMakeLists.txt中 find_package(...)里添加 tf 和 nav_msgs就行了,最终得到:
find_package(catkin REQUIRED COMPONENTS roscpp rospy std_msgs message_generation tf nav_msgs )
最后还要为了使得你的C++程序能够运行,在CMakeLists.txt中最后或者相应位置,还要添加上如下指令:
add_executable(publish_odom src/publish_odom.cpp) target_link_libraries(publish_odom ${catkin_LIBRARIES}) add_dependencies(publish_odom beginner_tutorials_generate_messages_cpp)
完成这些以后,编译一下你的catkin_ws工作空间,在新终端中输入如下指令:
cd ~/catkin_ws catkin_make
现在,有了这两个节点程序,dsp到move_base和move_base到dsp这条路通了,只要建立地图,发布坐标转换就可以用了。在下一篇文章中,我们将介绍几个与导航有关的 tf 坐标转换,再在一个空白地图上使用move_base进行导航。
最后,关于这种左右轮速度转化为Odom的程序,ros论坛里有,如这个链接。ros自己写好的教程里也有如arbotix_driver 这个节点程序里有一句,你可以在你的文件系统里搜索arbotix_driver:
from arbotix_python.diff_controller import DiffController
你在文件系统里搜索diff_controller这个文件,打开它就可看到相应的转换程序,楼主和他们的其实相差无几。