洛谷—— P1873 砍树

https://www.luogu.org/problemnew/show/P1873

题目描述

伐木工人米尔科需要砍倒M米长的木材。这是一个对米尔科来说很容易的工作,因为他有一个漂亮的新伐木机,可以像野火一样砍倒森林。不过,米尔科只被允许砍倒单行树木。

米尔科的伐木机工作过程如下:米尔科设置一个高度参数H(米),伐木机升起一个巨大的锯片到高度H,并锯掉所有的树比H高的部分(当然,树木不高于H米的部分保持不变)。米尔科就行到树木被锯下的部分。

例如,如果一行树的高度分别为20,15,10和17,米尔科把锯片升到15米的高度,切割后树木剩下的高度将是15,15,10和15,而米尔科将从第1棵树得到5米,从第4棵树得到2米,共得到7米木材。

米尔科非常关注生态保护,所以他不会砍掉过多的木材。这正是他为什么尽可能高地设定伐木机锯片的原因。帮助米尔科找到伐木机锯片的最大的整数高度H,使得他能得到木材至少为M米。换句话说,如果再升高1米,则他将得不到M米木材。

输入输出格式

输入格式:

第1行:2个整数N和M,N表示树木的数量(1<=N<=1000000),M表示需要的木材总长度(1<=M<=2000000000)

第2行:N个整数表示每棵树的高度,值均不超过1000000000。所有木材长度之和大于M,因此必有解。

输出格式:

第1行:1个整数,表示砍树的最高高度。

输入输出样例

输入样例#1: 复制

5 20
4 42 40 26 46

输出样例#1: 复制

36
 1 #include <algorithm>
 2 #include <cstdio>
 3
 4 #define max(a,b) (a>b?a:b)
 5
 6 inline void read(int &x)
 7 {
 8     x=0; register char ch=getchar();
 9     for(; ch>‘9‘||ch<‘0‘; ) ch=getchar();
10     for(; ch>=‘0‘&&ch<=‘9‘; ch=getchar()) x=x*10+ch-‘0‘;
11 }
12
13 const int N(1000005);
14
15 int n,m,h[N];
16
17 int L,R,Mid,ans;
18
19 inline bool check(int H)
20 {
21     int tot=0;
22     for(int i=n; i; --i)
23     {
24         if(tot>=m) return 1;
25         if(h[i]<=H) return 0;
26         tot+=(h[i]-H);
27     }
28     return tot>=m;
29 }
30
31 int Presist()
32 {
33     read(n),read(m);
34     for(int i=1; i<=n; ++i) read(h[i]);
35     std:: sort(h+1,h+n+1);
36     for(R=h[n]; L<=R; )
37     {
38         Mid=L+R>>1;
39         if(check(Mid))
40         {
41             ans=Mid;
42             L=Mid+1;
43         }
44         else R=Mid-1;
45     }
46     printf("%d\n",ans);
47     return 0;
48 }
49
50 int Aptal=Presist();
51 int main(int argc,char**argv){;}
时间: 2024-11-05 16:00:30

洛谷—— P1873 砍树的相关文章

洛谷P3018 [USACO11MAR]树装饰Tree Decoration

洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 1 #include <bits/stdc++.h> 2 #define For(i, j, k) for(int i=j; i<=k; i++) 3 #define Dow(i, j, k) for(int i=j; i>=k; i--) 4 #define LL long long 5 using namespace std;

P1873 砍树

伐木工人米尔科需要砍倒M米长的木材.这是一个对米尔科来说很容易的工作, 因为他有一个漂亮的新伐木机,可以像野火一样砍倒森林.不过,米尔科只被允许 砍倒单行树木. 米尔科的伐木机工作过程如下:米尔科设置一个高度参数H(米),伐木机升起 一个巨大的锯片到高度H,并锯掉所有的树比H高的部分(当然,树木不高于H米的部 分保持不变).米尔科就行到树木被锯下的部分. 例如,如果一行树的高度分别为20,15,10和17,米尔科把锯片升到15米的高度, 切割后树木剩下的高度将是15,15,10和15,而米尔科将

洛谷 P3252 [JLOI2012]树

P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一定从根节点开始. 输入输出格式 输入格式: 第一行是两个整数N和S,其中N是树的节点数. 第二行是N个正整数,第i个整数表示节点i的正整数. 接下来的N-1行每行是2个整数x和y,表示y是x的儿子. 输出格式: 输出路径节点总和为S的路径数量. 输入输出样例

[模板]洛谷T3372 线段树 模板1

变量定义: sum[]:线段树节点对应区间的元素总和: addv[]:线段树节点对应区间的所有元素的待追加值(懒标记),初值全部设为0. 过程说明: 建树(Build): 若当前节点仅包含原序列中的一个值,即L=R,则直接赋值为序列中该值,否则递归建立左右子树后,将左右子树保存的sum值相加,即得到当前节点的sum值. 懒标记下放(Push_down): 将当前节点的addv值下放到左右子树. 细节实现: 1.子树的addv值加上当前节点的addv值: 2.子树的sum值加上(子树包含元素数量*

[模板]洛谷T3373 线段树 模板2

此题相对于模板一,加了个区间乘,于是在模板一的基础上需要多开个数组(记录乘法懒标记).多写个函数(区间乘),还有要把懒标记下放函数做些修改. 变量定义: sum[]:线段树节点对应区间的元素总和: addv[]:线段树节点对应区间的所有元素待加的值(懒标记),初值全部设为0: mulv[]:线段树节点对应区间的所有元素待乘的值(懒标记),初值全部设为1. 过程说明: 建树(Build): 同模板一... 懒标记下放(Push_down): 原理解释: 1.当对某区间执行加法操作时,由于加法优先级

洛谷 P2590 [ZJOI2008]树的统计

题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 III. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身 输入输出格式 输入格式: 输入文件的第一行为一个整数n,表示节点的个数. 接下来n – 1行,每行2个整数a和b,表示节点a和节点b之

洛谷P3252 [JLOI2012]树

题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一定从根节点开始. 输入输出格式 输入格式: 第一行是两个整数N和S,其中N是树的节点数. 第二行是N个正整数,第i个整数表示节点i的正整数. 接下来的N-1行每行是2个整数x和y,表示y是x的儿子. 输出格式: 输出路径节点总和为S的路径数量. 输入输出样例 输入样例#1: 3 3 1 2 3

洛谷P3372线段树模板1——线段树

题目:https://www.luogu.org/problemnew/show/P3372 线段树模板. 代码如下: #include<iostream> #include<cstdio> using namespace std; long long n,m,a[100005],ct; struct N{ long long lazy,sum; long long ls,rs; }p[200005]; void pushdown(long long cur,long long l

洛谷.4114.Qtree1(树链剖分)

题目链接 模板题都错了这么多次.. //边权赋到点上 树剖模板 //注意LCA.链的顶端不能统计到答案! #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar() #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 const int N=1e5+5; int n,m,cnt,ep[N],W[N],