20155202 张旭 Linux下IPC机制

20155202张旭 Linux下IPC机制

IPC机制定义

  • 在linux下的多个进程间的通信机制叫做IPC(Inter-Process Communication),它是多个进程之间相互沟通的一种方法。在linux下有多种进程间通信的方法:半双工管道、命名管道、消息队列、信号、信号量、共享内存、内存映射文件,套接字等等。使用这些机制可以为linux下的网络服务器开发提供灵活而又坚固的框架。

共享内存

  • 共享内存是在多个进程之间共享内存区域的一种进程间的通信方式,由IPC为进程创建的一个特殊地址范围,它将出现在该进程的地址空间(这里的地址空间具体是哪个地方?)中。其他进程可以将同一段共享内存连接到自己的地址空间中。所有进程都可以访问共享内存中的地址,就好像它们是malloc分配的一样。如果一个进程向共享内存中写入了数据,所做的改动将立刻被其他进程看到。
  • 共享内存是IPC最快捷的方式,因为共享内存方式的通信没有中间过程,而管道、消息队列等方式则是需要将数据通过中间机制进行转换。共享内存方式直接将某段内存段进行映射,多个进程间的共享内存是同一块的物理空间,仅仅映射到各进程的地址不同而已,因此不需要进行复制,可以直接使用此段空间。
  • 注意:共享内存本身并没有同步机制,需要程序员自己控制。
    共享内存的实例
int shmget(key_t key,size_t size,int shmflg);  //shmget函数用来创建一个新的共享内存段, 或者访问一个现有的共享内存段(不同进程只要key值相同即可访问同一共享内存段)。第一个参数key是ftok生成的键值,第二个参数size为共享内存的大小,第三个参数sem_flags是打开共享内存的方式。
eg.int shmid = shmget(key, 1024, IPC_CREATE | IPC_EXCL | 0666);//第三个参数参考消息队列int msgget(key_t key,int msgflag);
void *shmat(int shm_id,const void *shm_addr,int shmflg); //shmat函数通过shm_id将共享内存连接到进程的地址空间中。第二个参数可以由用户指定共享内存映射到进程空间的地址,shm_addr如果为0,则由内核试着查找一个未映射的区域。返回值为共享内存映射的地址。
eg.char *shms = (char *)shmat(shmid, 0, 0);//shmid由shmget获得
int shmdt(const void *shm_addr); //shmdt函数将共享内存从当前进程中分离。 参数为共享内存映射的地址。
eg.shmdt(shms);
int shmctl(int shm_id,int cmd,struct shmid_ds *buf);//shmctl函数是控制函数,使用方法和消息队列msgctl()函数调用完全类似。参数一shm_id是共享内存的句柄,cmd是向共享内存发送的命令,最后一个参数buf是向共享内存发送命令的参数。

管道 (PIPE)

  • 管道实际是用于进程间通信的一段共享内存,创建管道的进程称为管道服务器,连接到一个管道的进程为管道客户机。一个进程在向管道写入数据后,另一进程就可以从管道的另一端将其读取出来。

    管道的特点:

  1. 管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;
  2. 只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程)。比如fork或exec创建的新进程,在使用exec创建新进程时,需要将管道的文件描述符作为参数传递给exec创建的新进程。当父进程与使用fork创建的子进程直接通信时,发送数据的进程关闭读端,接受数据的进程关闭写端。
  3. 单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统,并且只存在与内存中。
  4. 数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。
管道实例:
#include <unistd.h>
int pipe(int file_descriptor[2]);//建立管道,该函数在数组上填上两个新的文件描述符后返回0,失败返回-1。
eg.int fd[2]
int result = pipe(fd);

命名管道(FIFO)

  • 命名管道是一种特殊类型的文件,它在系统中以文件形式存在。这样克服了管道的弊端,他可以允许没有亲缘关系的进程间通信。具体操作方法只要创建了一个命名管道然后就可以使用open、read、write等系统调用来操作。创建可以手工创建或者程序中创建。
命名管道实例:
#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(const char *filename,mode_t mode); //建立一个名字为filename的命名管道,参数mode为该文件的权限(mode%~umask),若成功则返回0,否则返回-1,错误原因存于errno中。
eg.mkfifo( "/tmp/cmd_pipe", S_IFIFO | 0666 );
  • int mknod(const char *path, mode_t mode, dev_t dev); //第一个参数表示你要创建的文件的名称,第二个参数表示文件类型,第三个参数表示该文件对应的设备文件的设备号。只有当文件类型为 S_IFCHR 或 S_IFBLK 的时候该文件才有设备号,创建普通文件时传入0即可。
    eg.mknod(FIFO_FILE,S_IFIFO|0666,0);

管道和命名管道的区别:

  • 对于命名管道FIFO来说,IO操作和普通管道IO操作基本一样,但是两者有一个主要的区别,在命名管道中,管道可以是事先已经创建好的,比如我们在命令行下执行

    mkfifo myfifo

就是创建一个命名通道,我们必须用open函数来显示地建立连接到管道的通道,而在管道中,管道已经在主进程里创建好了,然后在fork时直接复制相关数据或者是用exec创建的新进程时把管道的文件描述符当参数传递进去。

  • 一般来说FIFO和PIPE一样总是处于阻塞状态。也就是说如果命名管道FIFO打开时设置了读权限,则读进程将一直阻塞,一直到其他进程打开该FIFO并向管道写入数据。这个阻塞动作反过来也是成立的。如果不希望命名管道操作的时候发生阻塞,可以在open的时候使用O_NONBLOCK标志,以关闭默认的阻塞操作。

信号 (signal)

  • 信号机制是unix系统中最为古老的进程之间的通信机制,用于一个或几个进程之间传递异步信号。信号可以有各种异步事件产生,比如键盘中断等。shell也可以使用信号将作业控制命令传递给它的子进程。

    信号实例
int kill(pid_t pid,int sig); //kill函数向进程号为pid的进程发送信号,信号值为sig。当pid为0时,向当前系统的所有进程发送信号sig。
int raise(int sig);//向当前进程中自举一个信号sig, 即向当前进程发送信号。
#include <unistd.h>
unsigned int alarm(unsigned int seconds); //alarm()用来设置信号SIGALRM在经过参数seconds指定的秒数后传送给目前的进程。如果参数seconds为0,则之前设置的闹钟会被取消,并将剩下的时间返回。使用alarm函数的时候要注意alarm函数的覆盖性,即在一个进程中采用一次alarm函数则该进程之前的alarm函数将失效。
int pause(void); //使调用进程(或线程)睡眠状态,直到接收到信号,要么终止,或导致它调用一个信号捕获函数。

消息队列

  • 消息队列是内核地址空间中的内部链表,通过linux内核在各个进程直接传递内容,消息顺序地发送到消息队列中,并以几种不同的方式从队列中获得,每个消息队列可以用IPC标识符唯一地进行识别。内核中的消息队列是通过IPC的标识符来区别,不同的消息队列直接是相互独立的。每个消息队列中的消息,又构成一个独立的链表。

    消息队列克服了信号承载信息量少,管道只能承载无格式字符流。

    消息队列的本质
  • Linux的消息队列(queue)实质上是一个链表,它有消息队列标识符(queue ID)。 msgget创建一个新队列或打开一个存在的队列;msgsnd向队列末端添加一条新消息;msgrcv从队列中取消息, 取消息是不一定遵循先进先出的, 也可以按消息的类型字段取消息。

消息队列与命名管道的比较

  • 消息队列跟命名管道有不少的相同之处,通过与命名管道一样,消息队列进行通信的进程可以是不相关的进程,同时它们都是通过发送和接收的方式来传递数据的。在命名管道中,发送数据用write,接收数据用read,则在消息队列中,发送数据用msgsnd,接收数据用msgrcv。而且它们对每个数据都有一个最大长度的限制。
  • 与命名管道相比,消息队列的优势在于,1、消息队列也可以独立于发送和接收进程而存在,从而消除了在同步命名管道的打开和关闭时可能产生的困难。2、同时通过发送消息还可以避免命名管道的同步和阻塞问题,不需要由进程自己来提供同步方法。3、接收程序可以通过消息类型有选择地接收数据,而不是像命名管道中那样,只能默认地接收。
  • 消息队列头文件:
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/msg.h>
  • 1、消息缓冲区结构:
struct msgbuf{
    long mtype;
    char mtext[1];//柔性数组
}
  • 在结构中有两个成员,mtype为消息类型,用户可以给某个消息设定一个类型,可以在消息队列中正确地发送和接受自己的消息。mtext为消息数据,采用柔性数组,用户可以重新定义msgbuf结构。例如:
struct msgbuf{
    long mtype;
    char mtext[1];//柔性数组
}
  • 当然用户不可随意定义msgbuf结构,因为在linux中消息的大小是有限制的,在linux/msg.h中定义如下:

    define MSGMAX 8192

    消息总的大小不能超过8192个字节,包括mtype成员(4个字节)。

  • 2、ipc_perm内核数据结构:结构体ipc_perm保存着消息队列的一些重要的信息,比如说消息队列关联的键值,消息队列的用户id组id等。它定义在头文件linux/ipc.h中。

    struct ipc_perm{
      key_t key;
      uid_t uid;
      gid_t gid;
      .......
    };

消息队列、信号量以及共享内存的相似之处:

  • 它们被统称为XSI IPC,它们在内核中有相似的IPC结构(消息队列的msgid_ds,信号量的semid_ds,共享内存的shmid_ds),而且都用一个非负整数的标识符加以引用(消息队列的msg_id,信号量的sem_id,共享内存的shm_id,分别通过msgget、semget以及shmget获得),标志符是IPC对象的内部名,每个IPC对象都有一个键(key_t key)相关联,将这个键作为该对象的外部名。
  • 参考博客:linux基础——linux进程间通信(IPC)机制总结
时间: 2024-10-17 17:12:05

20155202 张旭 Linux下IPC机制的相关文章

linux各种IPC机制(进程通信)

linux各种IPC机制 (2011-07-08 16:58:35)     原文地址:linux各种IPC机制(转)作者:jianpengliu 原帖发表在IBM的developerworks网站上,是一个系列的文章,作者郑彦兴,通过讲解和例子演示了Linux中几种IPC的使用方式,我觉得很好,在这里做一个保留,能看完的话Linux IPC的基础是没有问题的了.一)Linux环境进程间通信(一)管道及有名管道http://www.ibm.com/developerworks/cn/linux/

linux下epoll机制实现多用户并发连接

linux下epoll机制我就不再阐述了,网上找了好多资料和例子,发现和我想要的功能完全不一样,所以就自己写了一个. 实现的功能是,有很多客户端同时连接服务器,例如,S为服务器,有客户端A和客户端B要连接服务器,他们都需要验证密码,若A先连接服务器,此时不输入密码:B再连接服务器,此时,B输入密码的话,服务器不会响应,必须等A先验证完,才可以.我给的例子,可以实现:若A连接了服务器而没有输入密码,B再连接,这是服务器可以为B生成一个线程,确认B的密码后,将客户端的client_sockfd加入到

Linux进程间通信 --- IPC机制(转)

在linux下的多个进程间的通信机制叫做IPC(Inter-Process Communication),它是多个进程之间相互沟通的一种方法.在linux下有多种进程间通信的方法:半双工管道.命名管道.消息队列.信号.信号量.共享内存.内存映射文件,套接字等等.使用这些机制可以为linux下的网络服务器开发提供灵活而又坚固的框架. 1. 管道 (PIPE)    管道实际是用于进程间通信的一段共享内存,创建管道的进程称为管道服务器,连接到一个管道的进程为管道客户机.一个进程在向管道写入数据后,另

linux下IPC通信

# 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用.进程的亲缘关系通常是指父子进程关系. # 有名管道 (named pipe) : 有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信. # 信号量( semophore ) : 信号量是一个计数器,可以用来控制多个进程对共享资源的访问.它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源.因此,主要作为进程间以及同一进程内不同线程之间的同步手段. # 消息队列

Linux进程间通信(IPC)机制总览

Linux进程间通信 Ø  管道与消息队列 ü  匿名管道,命名管道 ü  消息队列 Ø  信号 ü  信号基础 ü  信号应用 Ø  锁与信号灯 ü  记录锁 ü  有名信号灯 ü  无名信号灯(基于内存的信号灯) Ø  共享内存 ü  共享内存介绍 ü  文件映射内存方式 ü  共享内存对象方式 为什么需要进程间通信 Ø  数据传输代表:管道 FIFO 消息队列 SOCKET Ø  事件通知代表:信号 Ø  分工协作代表:锁和信号灯 Ø  高效数据共享代表:共享内存 进程间通信主要分支及演进

为什么Android要采用Binder作为IPC机制?

作者:Gityuan链接:https://www.zhihu.com/question/39440766/answer/89210950来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 在开始回答 前,先简单概括性地说说Linux现有的所有进程间IPC方式: 1. 管道:在创建时分配一个page大小的内存,缓存区大小比较有限:2. 消息队列:信息复制两次,额外的CPU消耗:不合适频繁或信息量大的通信:3. 共享内存:无须复制,共享缓冲区直接付附加到进程虚拟地址空间,

linux下六大IPC机制【转】

转自http://blog.sina.com.cn/s/blog_587c016a0100nfeq.html linux下进程间通信IPC的几种主要手段简介: 管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信:信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身:linux除了支持Un

2017-2018-1 20155222 《信息安全系统设计基础》第10周 Linux下的IPC机制

2017-2018-1 20155222 <信息安全系统设计基础>第10周 Linux下的IPC机制 IPC机制 在linux下的多个进程间的通信机制叫做IPC(Inter-Process Communication),它是多个进程之间相互沟通的一种方法.在linux下有多种进程间通信的方法:半双工管道.命名管道.消息队列.信号.信号量.共享内存.内存映射文件,套接字等等.使用这些机制可以为linux下的网络服务器开发提供灵活而又坚固的框架. 以上内容引用自CSDN 共享内存 共享内存是在多个

Linux下的动态连接库及其实现机制

Linux与Windows的动态连接库概念相似,但是实现机制不同.它引入了GOT表和PLT表的概念,综合使用了多种重定位项,实现了"浮动代码",达到了更好的共享性能.本文对这些技术逐一进行了详细讨论. 本文着重讨论x86体系结构,这是因为 (1)运行Linux的各种体系结构中,以x86最为普及: (2)该体系结构上的Windows操作系统广为人知,由此可以较容易的理解Linux的类似概念: 下表列出了Windows与Linux的近义词,文中将不加以区分: Windows Linux 动