Python 递归实现斐波那契数列

def fab(n):

if n==1 or n==2:

return 1

else:

return fab(n-1)+fab(n-2)

num=int(input(‘请输入数字:‘))

result=fab(num)

print("总共有%d个小兔子"% result)

时间: 2024-11-25 06:21:30

Python 递归实现斐波那契数列的相关文章

Python递归及斐波那契数列

递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理.于是,fact(n)用递归的方式写出来就是: def fact(

如何使用Python输出一个[斐波那契数列]

如何使用Python输出一个[斐波那契数列]Fibonacci 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列". 例子:1.1.2.3.5.8.13.21.34.-- 解法1: 100以内的斐波那契数列 x=1 y=1 print(x,end=" ") print(y,end=" ") while(True)

13、蛤蟆的数据结构笔记之十三栈的应用之栈与递归之斐波那契数列

13.蛤蟆的数据结构笔记之十三栈的应用之栈与递归之斐波那契数列 本篇名言:"人生不是一支短短的蜡烛,而是一支由我们暂时拿着的火炬,我们一定要把它燃得." 继续递归的斐波那契数列问题. 欢迎转载,转载请标明出处: 1.  斐波那契数列 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.--在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理.准晶体结构.化学

两个关于数列的Python脚本(斐波那契数列和猴子吃香蕉类问题)

斐波那契数列(Fibonacci sequence),因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列",又因其相邻两项的比无限接近黄金分割比例,所以又称为黄金分割数列,指的是这样一个数列:1.1.2.3.5.8.13.21.34.--,即后一项是前两项的和. #!/usr/bin/python #coding:utf-8 #斐波那契数列 x=[0,1] for i in range(int(raw_input('请输入数

Python与Go斐波那契数列

#!/usr/bin/env python # -*- coding: utf-8 -*- # 斐波那契数列 def fibonacci_sequence(num): aa = 0 b = 1 li = list() li.append(aa) li.append(b) for i in range(1, num): aa, b = b, a + b li.append(b) return li if __name__ == '__main__': a = fibonacci_sequence(

249 递归:概念,利用递归求1~n的阶乘,利用递归求斐波那契数列,利用递归遍历数据

6.1什么是递归 递归:如果一个函数在内部可以调用其本身,那么这个函数就是递归函数. 简单理解: 函数内部自己调用自己, 这个函数就是递归函数 注意:递归函数的作用和循环效果一样,由于递归很容易发生"栈溢出"错误(stack overflow),所以必须要加退出条件return. <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"&g

递归之斐波那契数列

在数学上,費波那契數列是以递归的方法來定义: (n≧2) 用文字來说,就是斐波那契数列由0和1开始,之後的斐波那契数列就由之前的兩数相加. 这也是从维基百科上摘来的表述,比较的专业点.那个简单的写一下前面的几个是: 0,1,1,2,3,5,8,13,21,34,55,89,144,233...... 这个也是成一个指数增长的现象,所以兔子要是都按这个节奏生长,那就天天有肉吃了,还便宜!!! 这个问题相对与汉诺塔问题,较我而且,斐波那契数列一目了然,比较的好理解. 下面就用Ptyhon来实现一下:

递归与斐波那契数列

一.递归 在函数内部,可以调用其他函数;如果一个函数在内部调用自己,那这个函数就是递归函数. 案例:遍历当前目录下的所有文件 1.递归遍历 1 import os 2 def gci(filepath): 3 #遍历filepath下所有文件,包括子目录 4 files = os.listdir(filepath) 5 for fi in files: 6 fi_d = os.path.join(filepath,fi) 7 if os.path.isdir(fi_d): 8 gci(fi_d)

使用递推和递归解决斐波那契数列问题~~~

/** * 使用递推的方式处理斐波那契数列 * @param sum * @param i * @return */ public static int findValue(int n){ if(n==1) { return 1; } if(n==2) { return 2; } int sum=1; int pre=1; for(int i=3;i<=n;i++) { int temp=sum; sum+=pre; pre=temp; } return sum; } /** * 采用递归的方式