2017-2018-1 20155202 《信息安全系统设计基础》第14周学习总结

2017-2018-1 20155202 《信息安全系统设计基础》第14周学习总结

==深入理解第11章:网络编程==:

网络编程背景:

  • Internet的应用范围由最早的军事、国防,扩展到美国国内的学术机构,进而迅速覆盖了全球的各个领域,运营性质也由科研、教育为主逐渐转向商业化。
  • 在科学研究中,经常碰到“种瓜得豆”的事情,Internet的出现也正是如此:它的原型是1969年美国国防部远景研究规划局(Advanced Research Projects Agency)为军事实验用而建立的网络,名为ARPANET,初期只有四台主机,其设计目标是当网络中的一部分因战争原因遭到破 坏时,其余部分仍能正常运行;80年代初期ARPA和美国国防部通信局研制成功用于异构网络的TCP/IP协议并投入使用;1986年在美国国会科学基金会(National Science Foundation)的支持下,用高速通信线路把 分布在各地的一些超级计算机连接起来,以NFSNET接替ARPANET;进而又经过十几年的发展形成Internet。
  • 90年代初,中国作为第71个国家级网加入Internet,我国已经开放了Internet,通过中国公用互连网络(CHINANET)或中国教育科研计算机网(CERNET)都可与Internet联通。只要有一台微机,一部调制解调器和一部国内直拨电话就能够很方便地享受到Internet的资源;这是Internet逐步"爬"入普通人家的原因之一;原因之二,友好的用户界面、丰富的信息资源、贴近生活的人情化感受使非专业的家庭用户既做到应用自如,又能大饱眼福,甚至利用它为自己的工作、学习、生活锦上添花,真正做到"足不出户,可成就天下事,潇洒作当代人"。
  • 网络的神奇作用吸引着越来越多的用户加入其中,正因如此,网络的承受能力也面临着越来越严峻的考验―从硬件上、软件上、所用标准上......,各项技术都需要适时应势,对应发展,这正是网络迅速走向进步的催化剂。到了今天,Internet能够负担如此众多用户的参与,说明我们的网络技术已经成长到了相当成熟的地步,用户自己也能耳闻目睹不断涌现的新名词、新概念。但这还不是终结,仅仅是历史长河的一段新纪元的开始而已。

客户端一服务器编程模型

每个网络应用都是基于客户端一服务器模型的
采用这个模型,一个应用是由一个服务器进程和一个或者多个客户端进程组成。服务器管理某种资源,并且通过操作这种资源来为它的客户端提供某种服务。例如,一个Web服务器管理着一组磁盘文件,它会代表客户端进行检索和执行。一个FTP服务器管理着一组磁盘文件,它会为客户端进行存储和检索。相似地,一个电子邮件服务器管理着一些文件,它为客户端进行读和更新。客户端一服务器模型中的基本操作是事务(transaction)。一个客户端一服务器事务由以下四步组成。
  • 1)当一个客户端需要服务时,它向服务器发送一个请求,发起一个事务。例如,当Web浏览器需要一个文件时,它就发送一个请求给Web服务器。
  • 2)服务器收到请求后,解释它,并以适当的方式操作它的资源。例如,当Web服务 器收到浏览器发出的请求后,它就读一个磁盘文件。
  • 3)服务器给客户端发送一个响应,并等待下一个请求。例如,Web服务器将文件发送回客户端。
  • 4)客户端收到响应并处理它。例如,当Web浏览器收到来自服务器的一页后,就在

    屏幕上显示此页。

==socket编程:==

==1、网络中进程之间如何通信?==

本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类:

  1. 消息传递(管道、FIFO、消息队列)
  2. 同步(互斥量、条件变量、读写锁、文件和写记录锁、信号量)
  3. 共享内存(匿名的和具名的)
  4. 远程过程调用(Solaris门和Sun RPC)
  • 网络中进程之间如何通信?首要解决的问题是如何唯一标识一个进程,否则通信无从谈起!在本地可以通过进程PID来唯一标识一个进程,但是在网络中这是行不通的。其实TCP/IP协议族已经帮我们解决了这个问题,网络层的“ip地址”可以唯一标识网络中的主机,而传输层的“协议+端口”可以唯一标识主机中的应用程序(进程)。这样利用三元组(ip地址,协议,端口)就可以标识网络的进程了,网络中的进程通信就可以利用这个标志与其它进程进行交互。
  • 使用TCP/IP协议的应用程序通常采用应用编程接口:UNIXBSD的套接字(socket)和UNIX System V的TLI(已经被淘汰),来实现网络进程之间的通信。就目前而言,几乎所有的应用程序都是采用socket,而现在又是网络时代,网络中进程通信是无处不在,这就是我为什么说“一切皆socket”。

==2、什么是Socket?==

  • [ ] 道网络中的进程是通过socket来通信的,那什么是socket呢?socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,都可以用“打开open –> 读写write/read –> 关闭close”模式来操作。我的理解就是Socket就是该模式的一个实现,socket即是一种特殊的文件,一些socket函数就是对其进行的操作(读/写IO、打开、关闭)

==3.1、socket()函数==

int socket(int domain, int type, int protocol);
  • socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字,而socket()用于创建一个socket描述符(socket descriptor)

    ,它唯一标识一个socket。这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。

  • 正如可以给fopen的传入不同参数值,以打开不同的文件。创建socket的时候,也可以指定不同的参数创建不同的socket描述符,socket函数的三个参数分别为:
  1. domain:即协议域,又称为协议族(family)。常用的协议族有,AF_INET、AF_INET6、AF_LOCAL(或称AF_UNIX,Unix域socket)、AF_ROUTE等等。协议族决定了socket的地址类型,在通信中必须采用对应的地址,如AF_INET决定了要用ipv4地址(32位的)与端口号(16位的)的组合、AF_UNIX决定了要用一个绝对路径名作为地址。
  2. type:指定socket类型。常用的socket类型有,SOCK_STREAM、SOCK_DGRAM、SOCK_RAW、SOCK_PACKET、SOCK_SEQPACKET等等(socket的类型有哪些?)。
  3. protocol:故名思意,就是指定协议。常用的协议有,IPPROTO_TCP、IPPTOTO_UDP、IPPROTO_SCTP、IPPROTO_TIPC等,它们分别对应TCP传输协议、UDP传输协议、STCP传输协议、TIPC传输协议(这个协议我将会单独开篇讨论!)。
  • 注意:并不是上面的type和protocol可以随意组合的,如SOCK_STREAM不可以跟IPPROTO_UDP组合。当protocol为0时,会自动选择type类型对应的默认协议。
  • 当我们调用socket创建一个socket时,返回的socket描述字它存在于协议族(address family,AF_XXX)空间中,但没有一个具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数,否则就当调用connect()、listen()时系统会自动随机分配一个端口。

    3.2、bind()函数

    正如上面所说bind()函数把一个地址族中的特定地址赋给socket。例如对应AF_INET、AF_INET6就是把一个ipv4或ipv6地址和端口号组合赋给socket。

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

函数的三个参数分别为:

sockfd:即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。bind()函数就是将给这个描述字绑定一个名字。

addr:一个const struct sockaddr *指针,指向要绑定给sockfd的协议地址。这个地址结构根据地址创建socket时的地址协议族的不同而不同,如ipv4对应的是:

struct sockaddr_in {
    sa_family_t    sin_family; /* address family: AF_INET */
    in_port_t      sin_port;   /* port in network byte order */
    struct in_addr sin_addr;   /* internet address */
};

/* Internet address. */
struct in_addr {
    uint32_t       s_addr;     /* address in network byte order */
};
ipv6对应的是:
struct sockaddr_in6 {
    sa_family_t     sin6_family;   /* AF_INET6 */
    in_port_t       sin6_port;     /* port number */
    uint32_t        sin6_flowinfo; /* IPv6 flow information */
    struct in6_addr sin6_addr;     /* IPv6 address */
    uint32_t        sin6_scope_id; /* Scope ID (new in 2.4) */
};

struct in6_addr {
    unsigned char   s6_addr[16];   /* IPv6 address */
};
Unix域对应的是:
#define UNIX_PATH_MAX    108

struct sockaddr_un {
    sa_family_t sun_family;               /* AF_UNIX */
    char        sun_path[UNIX_PATH_MAX];  /* pathname */
};

addrlen:对应的是地址的长度。

  • 通常服务器在启动的时候都会绑定一个众所周知的地址(如ip地址+端口号),用于提供服务,客户就可以通过它来接连服务器;而客户端就不用指定,有系统自动分配一个端口号和自身的ip地址组合。这就是为什么通常服务器端在listen之前会调用bind(),而客户端就不会调用,而是在connect()时由系统随机生成一个。

网络字节序与主机字节序

  • 主机字节序就是我们平常说的大端和小端模式:不同的CPU有不同的字节序类型,这些字节序是指整数在内存中保存的顺序,这个叫做主机序。引用标准的Big-Endian和Little-Endian的定义如下:
a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。
  b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。
  • 网络字节序:4个字节的32 bit值以下面的次序传输:首先是0~7bit,其次8~15bit,然后16~23bit,最后是24~31bit。这种传输次序称作大端字节序。由于TCP/IP首部中所有的二进制整数在网络中传输时都要求以这种次序,因此它又称作网络字节序。字节序,顾名思义字节的顺序,就是大于一个字节类型的数据在内存中的存放顺序,一个字节的数据没有顺序的问题了。
  • 所以:在将一个地址绑定到socket的时候,请先将主机字节序转换成为网络字节序,而不要假定主机字节序跟网络字节序一样使用的是Big-Endian。由于这个问题曾引发过血案!公司项目代码中由于存在这个问题,导致了很多莫名其妙的问题,所以请谨记对主机字节序不要做任何假定,务必将其转化为网络字节序再赋给socket。

    listen()、connect()函数

  • 如果作为一个服务器,在调用socket()、bind()之后就会调用listen()来监听这个socket,如果客户端这时调用connect()发出连接请求,服务器端就会接收到这个请求。
int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
  • listen函数的第一个参数即为要监听的socket描述字,第二个参数为相应socket可以

    排队的最大连接个数。socket()函数创建的socket默认是一个主动类型的,listen函数将socket变为被动类型的,等待客户的连接请求。

  • connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址,第三个参数为socket地址的长度。客户端通过调用connect函数来建立与TCP服务器的连接。

accept()函数

  • TCP服务器端依次调用socket()、bind()、listen()之后,就会监听指定的socket地址了。TCP客户端依次调用socket()、connect()之后就想TCP服务器发送了一个连接请求。TCP服务器监听到这个请求之后,就会调用accept()函数取接收请求,这样连接就建立好了。之后就可以开始网络I/O操作了,即类同于普通文件的读写I/O操作。

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

  • accept函数的第一个参数为服务器的socket描述字,第二个参数为指向struct sockaddr *的指针,用于返回客户端的协议地址,第三个参数为协议地址的长度。如果accpet成功,那么其返回值是由内核自动生成的一个全新的描述字,代表与返回客户的TCP连接。
  • 注意:accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的,称为监听socket描述字;而accept函数返回的是已连接的socket描述字。一个服务器通常通常仅仅只创建一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每个由服务器进程接受的客户连接创建了一个已连接socket描述字,当服务器完成了对某个客户的服务,相应的已连接socket描述字就被关闭。

read()、write()等函数

万事具备只欠东风,至此服务器与客户已经建立好连接了。可以调用网络I/O进行读写操作了,即实现了网咯中不同进程之间的通信!网络I/O操作有下面几组:

  1. read()/write()
  2. recv()/send()
  3. readv()/writev()
  4. recvmsg()/sendmsg()
  5. recvfrom()/sendto()
  • 我推荐使用recvmsg()/sendmsg()函数,这两个函数是最通用的I/O函数,实际上可以把上面的其它函数都替换成这两个函数。它们的声明如下:
#include <unistd.h>

       ssize_t read(int fd, void *buf, size_t count);
       ssize_t write(int fd, const void *buf, size_t count);

       #include <sys/types.h>
       #include <sys/socket.h>

       ssize_t send(int sockfd, const void *buf, size_t len, int flags);
       ssize_t recv(int sockfd, void *buf, size_t len, int flags);

       ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
       ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);

       ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
       ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

read函数

  • 是负责从fd中读取内容.当读成功时,read返回实际所读的字节数,如果返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。如果错误为EINTR说明读是由中断引起的,如果是ECONNREST表示网络连接出了问题。

write函数

  • 将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数。失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描述符写时有俩种可能。1)write的返回值大于0,表示写了部分或者是全部的数据。2)返回的值小于0,此时出现了错误。我们要根据错误类型来处理。如果错误为EINTR表示在写的时候出现了中断错误。如果为EPIPE表示网络连接出现了问题(对方已经关闭了连接)。
  • 其它的我就不一一介绍这几对I/O函数了,具体参见man文档或者baidu、Google,下面的例子中将使用到send/recv。

close()函数

在服务器与客户端建立连接之后,会进行一些读写操作,完成了读写操作就要关闭相应的socket描述字,好比操作完打开的文件要调用fclose关闭打开的文件。

#include <unistd.h>
int close(int fd);
  • close一个TCP socket的缺省行为时把该socket标记为以关闭,然后立即返回到调用进程。该描述字不能再由调用进程使用,也就是说不能再作为read或write的第一个参数。
  • 注意:close操作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。

socket中TCP的三次握手建立连接详解

我们知道tcp建立连接要进行“三次握手”,即交换三个分组。大致流程如下:

  1. 客户端向服务器发送一个SYN J

    服务器向客户端响应一个SYN K,并对SYN J进行确认ACK J+1

    客户端再想服务器发一个确认ACK K+1

    只有就完了三次握手,但是这个三次握手发生在socket的那几个函数中呢?请看下图:

socket中发送的TCP三次握手

  • [x] 从图中可以看出,当客户端调用connect时,触发了连接请求,向服务器发送了SYN J包,这时connect进入阻塞状态;服务器监听到连接请求,即收到SYN J包,调用accept函数接收请求向客户端发送SYN K ,ACK J+1,这时accept进入阻塞状态;客户端收到服务器的SYN K ,ACK J+1之后,这时connect返回,并对SYN K进行确认;服务器收到ACK K+1时,accept返回,至此三次握手完毕,连接建立。
  • 总结:客户端的connect在三次握手的第二个次返回,而服务器端的accept在三次握手的第三次返回。

    socket中TCP的四次握手释放连接详解

  • 上面介绍了socket中TCP的三次握手建立过程,及其涉及的socket函数。现在我们介绍socket中的四次握手释放连接的过程,请看下图:
  1. 某个应用进程首先调用close主动关闭连接,这时TCP发送一个FIN M;
  2. 另一端接收到FIN M之后,执行被动关闭,对这个FIN进行确认。它的接收也作为文件结束符传递给应用进程,因为FIN的接收意味着应用进程在相应的连接上再也接收不到额外数据;
  3. 一段时间之后,接收到文件结束符的应用进程调用close关闭它的socket。这导致它的TCP也发送一个FIN N;
  4. 接收到这个FIN的源发送端TCP对它进行确认。

    这样每个方向上都有一个FIN和ACK。

==代码详解==

==客户端:==

#include "stdafx.h"
#include <winsock2.h>
#include <stdio.h>
#include<stdlib.h>
#pragma  comment(lib,"ws2_32.lib")
int main(int argc, char* argv[])
{
    int i;
    WORD sockVersion = MAKEWORD(2,2);
    WSADATA data;
    if(WSAStartup(sockVersion, &data) != 0)
    {
        return 0;
    }

    SOCKET sclient = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
    if(sclient == INVALID_SOCKET)
    {
        printf("invalid socket !");

        return 0;
    }

   struct   sockaddr_in serAddr;                    //地址结构体
    serAddr.sin_family = AF_INET;
    serAddr.sin_port = htons(20155202);
    serAddr.sin_addr.S_un.S_addr = inet_addr("127.0.0.1");
    if (connect(sclient, (struct sockaddr *)&serAddr, sizeof(serAddr)) == SOCKET_ERROR)
    {
        printf("connect error !");
        closesocket(sclient);
        return 0;
    }
int ret=0;
char sendData[255];
char recData[255];
  printf("你好,TCP服务端,我是客户端!\n");
    while(ret!=-1)
    {
    gets(sendData);
    send(sclient, sendData, strlen(sendData), 0);              //发送

     ret = recv(sclient, recData, 255, 0);                      //接收

                   if(ret > 0)
             {
                  printf("server : ");
                  recData[ret] = 0x00;                 //打印
                   puts(recData);

           }
    }

    WSACleanup();
    return 0;
}

==服务器==

#include "stdafx.h"
#include <stdio.h>
#include <winsock2.h>
#include<stdlib.h>
#pragma comment(lib,"ws2_32.lib")

int main(int argc, char* argv[])
{
    //初始化WSA
    WORD sockVersion = MAKEWORD(2,2);
    WSADATA wsaData;
    if(WSAStartup(sockVersion, &wsaData)!=0)
    {
        return 0;
    }
    //创建套接字
    SOCKET slisten = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
    if(slisten == INVALID_SOCKET)
    {
        printf("socket error !");
        return 0;
    }

    //绑定IP和端口
    struct  sockaddr_in sin;
    sin.sin_family = AF_INET;
    sin.sin_port = htons(20155202);
    sin.sin_addr.S_un.S_addr = INADDR_ANY;
    if(bind(slisten, (LPSOCKADDR)&sin, sizeof(sin)) == SOCKET_ERROR)
    {
        printf("bind error !");
    }

    //开始监听
    if(listen(slisten, 5) == SOCKET_ERROR)
    {
        printf("listen error !");
        return 0;
    }

    //循环接收数据
    SOCKET sClient;
struct    sockaddr_in remoteAddr;
    int nAddrlen = sizeof(remoteAddr);
    char revData[255];
    while (1)
    {
        printf(" 正在连接客户端...\n");
        sClient = accept(slisten, (SOCKADDR *)&remoteAddr, &nAddrlen);
        if(sClient == INVALID_SOCKET)
        {
            printf("accept error !");
            continue;
        }
        printf("接受到一个连接:%s \r\n", inet_ntoa(remoteAddr.sin_addr));
int ret=0;
char  sendData[255];
      while(ret!=-1)
        {
                                                   //接收数据
         ret = recv(sClient, revData, 255, 0);
        if(ret > 0)
        {
            revData[ret] = NULL;
        printf("Client : ");    puts(revData);
        }
                                                   //发送数据
        gets(sendData);
        send(sClient, sendData, strlen(sendData), 0);
        }
    }
    closesocket(slisten);
    WSACleanup();
    return 0;
}

==运行结果==:

在此基础上我又进行了写操作,使得客户端和服务器之间可以传送任意类型的文件,具体实现如下:

==客户端:==

#include <stdio.h>
#include <stdlib.h>
#include <WinSock2.h>

#define BUF_SIZE 1024
int main(){

    char filename[100] = {0};  //文件名

    WSADATA wsaData;
    WSAStartup(MAKEWORD(2, 2), &wsaData);

    SOCKET sock = socket(AF_INET, SOCK_STREAM,0);
    struct  sockaddr_in sockAddr;

    sockAddr.sin_family = AF_INET;
    sockAddr.sin_addr.s_addr = inet_addr("127.0.0.1");
    sockAddr.sin_port = htons(5202);

    printf("你好服务器,我是客户端\n");

    connect(sock, (SOCKADDR*)&sockAddr, sizeof(SOCKADDR));

printf("\n服务器像您发送文件请求\n\n您想要接收文件保存到 : \n ");
//输入文件名,看文件是否能创建成功
    gets(filename);
    FILE *fp = fopen(filename, "wb");  //以二进制方式打开文件
    if(fp == NULL){
        printf(" 创建文件失败,请按任意键继续 !\n");
        system("pause");
        exit(0);
    }

    //循环接收数据,直到文件传输完毕
    char buffer[BUF_SIZE] = {0};  //文件缓冲区
    int zishu;
    printf("\n正在接收写入数据\n");
    while( (zishu = recv(sock, buffer, BUF_SIZE, 0)) > 0 ){
        fwrite(buffer, zishu, 1, fp);
    }
    puts("\n文件接收完毕\n");
    //文件接收完毕后直接关闭套接字,无需调用shutdown()
    fclose(fp);
    closesocket(sock);
    WSACleanup();
    system("pause");
    return 0;
}

==服务器==

#include <stdio.h>
#include <stdlib.h>
#include <winsock2.h>

#define BUF_SIZE 10240
int main(){

    //初始化WSA
    WSADATA wsaData;
    WSAStartup( MAKEWORD(2, 2), &wsaData);

    SOCKET servSock = socket(AF_INET, SOCK_STREAM, 0);

    struct sockaddr_in sockAddr;

    sockAddr.sin_family = AF_INET;
    sockAddr.sin_addr.s_addr = INADDR_ANY;
    sockAddr.sin_port = htons(5202);

    bind(servSock, (SOCKADDR*)&sockAddr, sizeof(SOCKADDR));

    listen(servSock, 20);

    SOCKADDR clntAddr;

    int nSize = sizeof(SOCKADDR);

printf(" 服务器20155202  等待客户端连接...\n");

    SOCKET clntSock = accept(servSock, &clntAddr, &nSize);
    printf("\n接收到客户端来电\n");

  //先检查文件是否存在
    char filename[BUF_SIZE]; //文件名
    printf("\n输入你想传送的文件名\n");
    gets(filename);
    FILE *fp = fopen(filename, "rb");
    if(fp == NULL){
        printf("\n没那个文件!\n");
        system("pause");
        exit(0);
    }
    printf("\n正在上传至服务器\n");

    //循环发送数据,直到文件结尾
    char buffer[BUF_SIZE] = {0};  //缓冲区
    int zishu;
    while( (zishu = fread(buffer, 1, BUF_SIZE, fp)) > 0 ){
        send(clntSock, buffer, zishu, 0);
    }
    shutdown(clntSock, SD_SEND);  //文件读取完毕,断开输出流
    printf("\n正在上传文件至客户端\n");
    recv(clntSock, buffer, BUF_SIZE, 0);
    printf("\文件发送完毕\n\n");
    fclose(fp);

    closesocket(clntSock);
    closesocket(servSock);
    WSACleanup();
    system("pause");
    return 0;
}

==结果截图==:

本章问题

  • 问题1:多线程编译时候线程间工作时间顺序?还有pthread_join函数中*retval指针返回值是什么?
  • 问题1解决方案:我编了一个多线程程序来直观表现:

  • ##### 由此看出线程之间执行顺序随机,每次变化不一样,pthread_join函数中*retval指针返回指向存储线程返回值的变量,如果成功返回,返回0,否则返回errcode
  • 测试代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define NLOOP 50
int counter;
void *doit( void * );
int main(int argc, char **argv)
{
    pthread_t tidA, tidB;

    pthread_create( &tidA ,NULL, &doit,(void *)"衛彥忻\n");
    pthread_create( &tidB ,NULL, &doit,(void *)"張旭");

    pthread_join( tidA, NULL );
    pthread_join( tidB, NULL );

    return 0;
}
void * doit( void * vptr)
{
    int i, val;

    for ( i=0; i<NLOOP; i++ ) {
        //val = counter++;
        //printf("%x: %d \n", (unsigned int) pthread_self(), val + 1);
        //counter = val + 1;
printf("%s",vptr);
    }

}

代码托管

结对

  • 结对学习搭档讲解你的总结并获取反馈

    • 我结对的搭档:吕宇轩 20155239

      他的问题:

      问题1:SEQ是什么?

      - 问题1解决方案:

  • SEQ是 Sequential CPU的实现,表现在指令的执行要依次经历各个阶段(Fetch->Decode->Execut->Memory->WriteBack->PC Update).每一个指令在一个时钟周期内完成

问题2:如何将一个字节序列转变成汇编代码?

问题2解决方案:我的理解是:汇编代码最左边是地址序列,所以一定要有首地址,然后根据表格规则 去寻找指令对应的格式,例如 练习题4.1中 irmovl $15,%ebx,根据指令描述

  • 确定指令格式,开头为30F,然后看寄存器为%ebx,则对应数字3,所以为30F3,最后数字15的16进制输出为0x0000000f,根据小端原则汇编代码反过来写0f000000,所以完整汇编代码为30f30f000000,加上句首地址,为0x100: 30f30f000000

代码调试中的问题和解决过程

  • 问题1:多线程编译时候线程间工作时间顺序?还有pthread_join函数中*retval指针返回值是什么?
  • 问题1解决方案:我编了一个多线程程序来直观表现:

  • ##### 由此看出线程之间执行顺序随机,每次变化不一样,pthread_join函数中*retval指针返回指向存储线程返回值的变量,如果成功返回,返回0,否则返回errcode
  • 测试代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define NLOOP 50
int counter;
void *doit( void * );
int main(int argc, char **argv)
{
    pthread_t tidA, tidB;

    pthread_create( &tidA ,NULL, &doit,(void *)"衛彥忻\n");
    pthread_create( &tidB ,NULL, &doit,(void *)"張旭");

    pthread_join( tidA, NULL );
    pthread_join( tidB, NULL );

    return 0;
}
void * doit( void * vptr)
{
    int i, val;

    for ( i=0; i<NLOOP; i++ ) {
        //val = counter++;
        //printf("%x: %d \n", (unsigned int) pthread_self(), val + 1);
        //counter = val + 1;
printf("%s",vptr);
    }

}
  • 问题2:如何查看Y86-64汇编代码?
  • 问题2解决方案:

    安装一个Y86模拟器

一、下载Y86模拟器
二、安装词法分析工具
  • 在终端输入

    sudo apt-get install bison flex
三、安装Tcl/Tk 支持图形界面

继续输入:

sudo apt-get install tcl8.5-dev tk8.5-dev tcl8.5 tk8.5
四、解压sim.tar压缩包
  • 终端输入:tar xf sim.tar
  • 修改mkaefile文件(sim文件夹下) 用文档方式打开
  • GUIMODE=-DHAS_GUI
  • TKLIBS=-L/usr/lib/ -ltk8.5 -ltcl8.5
  • TKINC=-I/usr/include/tcl8.5

五、编译

  • 进入sim目录:cd sim
  • 在sim目录下终端输入:make clean
  • 在sim目录下终端输入:make

    六、运行图形界面

  • 以pism为例
  • 进入pipe目录:cd pipe
  • 运行图形界面:
    ./psim -t -g ../y86-code/asum.yo

    进入Y86-code 测试一下是否可以使用

    perfect,可以了

其他(感悟、思考等,可选)

学习了网络编程让我知道了客户端和服务器之间的交互的具体步骤,也让我对各类聊天软件有了更加深刻的了解。

学习进度条

代码行数(新增/累积) 博客量(新增/累积) 学习时间(新增/累积) 重要成长
目标 5000行 30篇 400小时
第13周 270/200 3/2 33/20

尝试一下记录「计划学习时间」和「实际学习时间」,到期末看看能不能改进自己的计划能力。这个工作学习中很重要,也很有用。

耗时估计的公式

:Y=X+X/N ,Y=X-X/N,训练次数多了,X、Y就接近了。

参考:软件工程软件的估计为什么这么难软件工程 估计方法

  • 计划学习时间:33小时
    • 实际学习时间:20小时
  • 改进情况:

(有空多看看现代软件工程 课件

软件工程师能力自我评价表)

参考资料

时间: 2024-10-02 02:46:14

2017-2018-1 20155202 《信息安全系统设计基础》第14周学习总结的相关文章

20145216 史婧瑶《信息安全系统设计基础》第一周学习总结

20145216 <信息安全系统设计基础>第一周学习总结 教材学习内容总结 Linux基础 1.ls命令 ls或ls .显示是当前目录的内容,这里“.”就是参数,表示当前目录,是缺省的可以省略.我们可以用ls -a .显示当前目录中的所有内容,包括隐藏文件和目录.其中“-a” 就是选项,改变了显示的内容.如图所示: 2.man命令 man命令可以查看帮助文档,如 man man : 若在shell中输入 man+数字+命令/函数 即可以查到相关的命令和函数:若不加数字,那man命令默认从数字较

20145311 《信息安全系统设计基础》第一周学习总结

20145311 <信息安全系统设计基础>第一周学习总结 教材学习内容总结 常用的部分命令 CTRL+SHIFT+T:新建标签页,编程时有重要应用: ALT+数字N:终端中切换到第N个标签页,编程时有重要应用: Tab:终端中命令补全,当输入某个命令的开头的一部分后,按下Tab键就可以得到提示或者帮助完成: CTRL+C:中断程序运行 Ctrl+D:键盘输入结束或退出终端 Ctrl+S: 暂定当前程序,暂停后按下任意键恢复运行 Ctrl+A: 将光标移至输入行头,相当于Home键 Ctrl+E

20145216史婧瑶《信息安全系统设计基础》第九周学习总结

20145216史婧瑶<信息安全系统设计基础>第九周学习总结 教材内容总结 第十章 系统级I/O 输入/输出(I/O)是在主存和外部设备之间拷贝数据的过程. 第一节 Unix I/O 这一节涉及到操作系统的基本抽象之一--文件.也就是说,所有的I/O设备都被模型化为文件,而所有的输入输出都被当做对相应文件的读/写.相关的执行动作如下: 1.打开文件: 应用程序向内核发出请求→要求内核打开相应的文件→内核返回文件描述符 文件描述符:一个小的非负整数,用来在后续对此文件的所有操作中标识这个文件.有

20145311 《信息安全系统设计基础》第二周学习总结

20145311 <信息安全系统设计基础>第二周学习总结 教材学习内容总结 重新学习了一下上周的一部分命令:grep main wyx.c(grep的全文检索功能)ls > ls.txt :ls内容输出到文本find pathname -mtime -n/+nfind -size -n/+n (find的功能还是比较强大) 简单地学习了一下vim编辑器,跟着vimtutor简单地学了一些,在linux bash中使用vim能够极大地提高效率, vim的用法比较多,只学习了其中简单的一部分

20145339《信息安全系统设计基础》第一周学习总结

20145339顿珠达杰<信息安全系统设计基础>第一周学习总结 ◆ Linux是一个操作系统.如果使用GUI,Linux和Windows没有什么区别.Linux学习应用的一个特点是通过命令行进行使用. 物理机系统上可以通过使用[Ctrl]+[Alt]+[F1]-[F6]进行终端和图形界面切换,在线实验环境中按下[Ctrl]+[Alt]+[F7]来完成切换.普通意义上的 Shell 就是可以接受用户输入命令的程序,Unix/Linux 操作系统下的 Shell 既是用户交互的界面,也是控制系统的

2017-2018-1 20155228 《信息安全系统设计基础》第九周学习总结

2017-2018-1 20155228 <信息安全系统设计基础>第九周学习总结 教材学习内容总结 常见的存储技术 RAM 随机访问存储器(Random-Access Memory, RAM)分为两类:静态的和动态的.静态 RAM(SRAM)比动态RAM(DRAM)更快,但也贵得多.SRAM用来作为高速缓存存储 器,既可以在CPU芯片上,也可以在片下.DRAM用来作为主存以及图形系统的帧缓冲 区.典型地,一个桌面系统的SRAM不会超过几兆字节,但是DRAM却有几百或几千兆 字节. SRAM将每

2017-2018-1 20155332 《信息安全系统设计基础》第九周学习总结

2017-2018-1 20155332 <信息安全系统设计基础>第九周学习总结 教材学习内容总结 简单模型中,存储器是一个线性的字节数组.真实模型中,是一个具有不同容量,成本,访问时间的存储层次结构(存储器山) 程序的局部性很重要,对程序性能有很重要的影响. 计算机系统一个基本而持久的思想,如果你理解了系统是如何将数据在存储器层级结构中上下移动,你就可以编写程序,让数据存储在层次结构中较高的地方,从而CPU可以更快的访问到他们. 编写程序实现功能是最简单的,如何让编写的程序拥有最高的性能,例

2017-2018-1 20155227 《信息安全系统设计基础》第九周学习总结

2017-2018-1 20155227 <信息安全系统设计基础>第九周学习总结 教材学习内容总结 第六章 随机访问存储器 随机访问存储器分为:静态RAM(SRAM)和动态RAM(DRAM),静态RAM(SRAM)比动态RAM(DRAM)更快,但也贵很多. (1)静态RAM SRAM将每个位存储在一个双稳态的存储器单元里,每个单元是用一个六晶体管电路来实现的. 属性:它可以无限制地保持在两个不同的电压配置或状态之一.其他任何状态都是不稳定的. 特点:由于SRAM的双稳态特性,只要有电,它就会永

2017-2018-1 20155334 《信息安全系统设计基础》第九周学习总结

2017-2018-1 20155334 <信息安全系统设计基础>第九周学习总结 学习目标: 了解常见的存储技术(RAM.ROM.磁盘.固态硬盘等) 理解局部性原理 理解缓存思想 理解局部性原理和缓存思想在存储层次结构中的应用 高速缓存的原理和应用 教材学习内容总结 一.常见的存储技术: 基本的存储技术包括随机存储器(RAM).非易失性存储器(ROM)和磁盘. 1. RAM分静态RAM(SRAM)和动态RAM(DRAM). 2. SRAM快些,主要用做CPU芯片上的高速缓存,也可以用作芯片下的

2017-2018-1 20155331 《信息安全系统设计基础》第九周学习总结

2017-2018-1 20155331 <信息安全系统设计基础>第九周学习总结 教材学习内容总结 存储器层次结构 存储技术 随机访问存储器 随机访问存储器分为:静态的SRAM.动态的DRAM 静态RAM: SRAM的特点:存储器单元具有双稳态特性,只要有电就会永远保持它的值,干扰消除时,电路就会恢复到稳定值. 动态RAM: DRAM的特点:每一位的存储是对一个电容的充电:对干扰非常敏感. 用途:数码照相机和摄像机的传感器 DRAM存储不稳定的应对机制: 存储器系统必须周期性地通过读出,或者重