深度学习中 --- 解决过拟合问题(dropout, batchnormalization)

过拟合,在Tom M.Mitchell的《Machine Learning》中是如何定义的:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据。

也就是说,某一假设过度的拟合了训练数据,对于和训练数据的分布稍有不同的数据,错误率就会加大。这一般会出现在训练数据集比较小的情况。

深度学习中避免过拟合的方法:

  • Dropout

     2012年ImageNet比赛的获胜模型AlexNet论文中提出的避免过拟合的方法。其操作方法如下图所示。

    • 在训练中以概率P(一般为50%)关掉一部分神经元,如图中的虚线的箭头。那么对于某些输出,并不是所有神经元会参与到前向和反向传播中。
    • 在预测的时候,将使用所有的神经元,但是会将其输出乘以0.5

Dropout的意义在于,减小了不同神经元的依赖度。有些中间输出,在给定的训练集上,可能发生只依赖某些神经元的情况,这就会造成对训练集的过拟合。而随机关掉一些神经元,可以让更多神经元参与到最终的输出当中。我觉得dropout方法也可以看成,联合很多规模比较小的网络的预测结果,去获取最终的预测。

时间: 2024-10-05 23:52:15

深度学习中 --- 解决过拟合问题(dropout, batchnormalization)的相关文章

深度学习中的Data Augmentation方法(转)基于keras

在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentation 2. Regularization. 数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生. 缺点是引入了一个需要手动调整的hyper-parameter. 详见 https://www.wikiwand.c

资深程序员带你玩转深度学习中的正则化技术(附Python代码)!

目录 1. 什么是正则化? 2. 正则化如何减少过拟合? 3. 深度学习中的各种正则化技术: L2和L1正则化 Dropout 数据增强(Data augmentation) 提前停止(Early stopping) 4. 案例:在MNIST数据集上使用Keras的案例研究 1. 什么是正则化? 在深入该主题之前,先来看看这几幅图: 之前见过这幅图吗?从左到右看,我们的模型从训练集的噪音数据中学习了过多的细节,最终导致模型在未知数据上的性能不好. 换句话说,从左向右,模型的复杂度在增加以至于训练

浅谈深度学习中潜藏的稀疏表达

浅谈深度学习中潜藏的稀疏表达 “王杨卢骆当时体,轻薄为文哂未休. 尔曹身与名俱灭,不废江河万古流.” — 唐 杜甫<戏为六绝句>(其二) [不要为我为啥放这首在开头,千人千面千理解吧] 深度学习:概述和一孔之见 深度学习(DL),或说深度神经网络(DNN), 作为传统机器学习中神经网络(NN).感知机(perceptron)模型的扩展延伸,正掀起铺天盖地的热潮.DNN火箭般的研究速度,在短短数年内带来了能“读懂”照片内容的图像识别系统,能和人对话到毫无PS痕迹的语音助手,能击败围棋世界冠军.引

干货 | 深入理解深度学习中的激活函数

理解深度学习中的激活函数 在这个文章中,我们将会了解几种不同的激活函数,同时也会了解到哪个激活函数优于其他的激活函数,以及各个激活函数的优缺点. 1. 什么是激活函数? 生物神经网络是人工神经网络的起源.然而,人工神经网络(ANNs)的工作机制与大脑的工作机制并不是十分的相似.不过在我们了解为什么把激活函数应用在人工神经网络中之前,了解一下激活函数与生物神经网络的关联依然是十分有用的. 一个典型神经元的物理结构由细胞体.向其他神经元发送信息的轴突以及从其他神经元接受信号或信息的树突组成. ? 图

深度学习中的常见问题汇总(一)

深度学习中的常见问题汇总(一) 转自 卷积神经网络的复杂度分析 关于感受野的总结 1.CNN复杂度分析 在深度学习基础网络不断进化的过程中,可以发现新的模型不仅性能有极大地提升,网络的复杂度通常也会更低.深度学习网络模型的复杂度直接关系到其实际应用中的速度与可行性,因此这里总结一下 CNN 复杂度的含义与计算方式. 1.1时间复杂度 通常,我们假设计算机运行一行基础代码需要一次运算,那么模型的时间复杂度即为模型的运算次数,用浮点运算次数 FLOPs(FLoating-point OPeratio

zz深度学习中的注意力模型

中间表示: C -> C1.C2.C3 i:target -> IT j: source -> JS sim(Query, Key) -> Value Key:h_j,类似某种“basis”: 从图9可以引出另外一种理解,也可以将Attention机制看作一种软寻址(SoftAddressing):Source可以看作存储器内存储的内容,元素由地址Key和值Value组成,当前有个Key=Query的查询,目的是取出存储器中对应的Value值,即Attention数值.通过Quer

[转] 深度学习中的注意力机制

from: https://zhuanlan.zhihu.com/p/37601161 注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理.语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影.所以,了解注意力机制的工作原理对于关注深度学习技术发展的技术人员来说有很大的必要. 人类的视觉注意力 从注意力模型的命名方式看,很明显其借鉴了人类的注意力机制,因此,我们首先简单介绍人类视觉的选择性注意力机制. 图1 人类的视觉注意力 视觉注意力机制是人类视觉所特有的大

深度学习中得数学,高效计算基础与线性分类器

深度学习说到底就是要调节网络中得权重,使网络的分类结果更接近于训练值.这个重复迭代的过程又是一个线性回归的问题.在这种可能会用到高数,线性代数,概率论中的知识. 一.数学基础提一提. 1.高数中得知识. 高数中最重要的就是微积分了,那在深度学习中出现最多的一个概念就是梯度.什么是梯度呢?要说导数,学过高数的肯定都知道.其实梯度就是当把标量x变成向量X时,对X求导就是梯度.那为什么要用梯度呢?因为梯度等于0在凸函数中往往代表着一个极小值点.我们要求得就是损失函数的极小值,这正是我们需要的.梯度是指

卷积在深度学习中的作用(转自http://timdettmers.com/2015/03/26/convolution-deep-learning/)

卷积可能是现在深入学习中最重要的概念.卷积网络和卷积网络将深度学习推向了几乎所有机器学习任务的最前沿.但是,卷积如此强大呢?它是如何工作的?在这篇博客文章中,我将解释卷积并将其与其他概念联系起来,以帮助您彻底理解卷积. 已经有一些关于深度学习卷积的博客文章,但我发现他们都对不必要的数学细节高度混淆,这些细节没有以任何有意义的方式进一步理解.这篇博客文章也会有很多数学细节,但我会从概念的角度来看待他们,在这里我用每个人都应该能够理解的图像表示底层数学.这篇博文的第一部分是针对任何想要了解深度学习中