1. 帮助指导使用已通过的癌症药物
虽然临床试验为医生们提供了许多药物如何发挥作用的有用信息,但是大概只有2%的癌症患者参与了临床试验。 事实上,每天都有成千上万的患者接受诊断和治疗。这意味着其实我们可以从中获得大量的重要数据,来帮助医生与病人在面对不同治疗方案及其可能的结果时做出更好的选择。
美国临床肿瘤学会ASCO发起建立一个数据库:CancerLinQ,旨在获取这些数据。它能将数据提供给医生们, 为他们提供实时的治疗建议。美国基因泰克公司(Genentech)的科学家和医生们都对能帮助ASCO开发一个完善的CancerLinQ系统感到兴奋。
2. 决定每位患者的预后治疗
了解患者的预后,可以帮助医疗团队决定对患者癌症的治疗强度,以及在肿瘤消失后需采取的措施。大数据正在借助分析从大量不同患者搜集过来的海量信息,来预测长期结果。例如,医生可以使用这些信息来决定哪些患者应该接受进一步治疗,哪些患者,由于他们的癌症不太可能复发而避免不必要的治疗。
3. 帮助药物开发发掘潜在的新靶点
对大量肿瘤DNA进行测序可以帮助研究人员了解一些与癌症相关的基因变化。科学家利用这一点帮助测试潜在的新药物,这些药物能靶定到某些与肿瘤生长相关的基因变化或驱动因子。大数据可以从临床前试验中获得,并用来帮助药物或药物组合的选择,以放到人类临床试验的研究中。
4. 解决大的公共卫生问题
流行病学研究包括癌症在内的人类疾病的起因及模式。在大数据时代之前,人们发现吸烟是导致绝大多数肺癌的因素。现在,大数据可以帮助解决癌症研究中更大的问题。新时代的流行病学借助于海量的住院记录及基因组数据,深入研究不同人群中的不同癌症。
5. 允许病人直接参与进来
癌症患者现在可以通过提供基因,医疗记录及治疗效果等数据,直接参与癌症研究。这些信息用于建立大型的研究数据库。