low level descriptors and high level descriptors

Types of visual descriptors[edit]

Descriptors are the first step to find out the connection between pixels contained in a digital
image
 and what humans recall after having observed an image or a group of images after
some minutes.

Visual descriptors are divided in two main groups:

  1. General information descriptors: they contain low level descriptors which give a description about colorshaperegionstextures andmotion.
  2. Specific domain information descriptors: they give information about objects and events in the scene. A concrete example would be face
    recognition
    .

General information descriptors[edit]

General information descriptors consist of a set of descriptors that covers different basic and elementary features like: colortextureshape,motion,
location and others. This description is automatically generated by means of signal processing.

  • COLOR: the most basic quality of visual content. Five tools are defined to describe color.
    The three first tools represent the colordistribution and the last ones describe the color relation
    between sequences or group of images:

    • Dominant Color Descriptor (DCD)
    • Scalable Color Descriptor (SCD)
    • Color Structure Descriptor (CSD)
    • Color Layout Descriptor (CLD)
    • Group of frame (GoF) or Group-of-pictures (GoP)
  • TEXTURE: also, an important quality in order to describe an image.
    The texture descriptors characterize image textures or
    regions. They observe the region homogeneity and the histograms of these region
    borders. The set of descriptors is formed by:

  • SHAPE: contains important semantic information
    due to human’s ability to recognize objects through their shape. However, this information can only be extracted
    by means of a segmentation similar to
    the one that the human visual system implements. Nowadays, such a segmentation system is not available yet, however there exists a serial of algorithms which are considered to be a good approximation. These descriptors describe regions, contours and shapes for 2D images and
    for 3D volumes. The shape descriptors
    are the following ones:

    • Region-based Shape Descriptor (RSD)
    • Contour-based Shape Descriptor (CSD)
    • 3-D Shape Descriptor (3-D SD)
  • MOTION: defined by four different descriptors which describe motion in video sequence.
    Motion is related to the objects motion in the sequence and to the camera motion. This last information is provided
    by the capture device, whereas the rest is implemented by means of image processing. The
    descriptor set is the following one:

    • Motion Activity Descriptor (MAD)
    • Camera Motion Descriptor (CMD)
    • Motion Trajectory Descriptor (MTD)
    • Warping and Parametric Motion Descriptor (WMD and PMD)
  • LOCATION: elements location in the image is used to describe elements
    in the spatial domain. In addition, elements can also be located in the temporal domain:

    • Region Locator Descriptor (RLD)
    • Spatio Temporal Locator Descriptor (STLD)

Specific domain information descriptors[edit]

These descriptors, which give information about objects and events in the scene, are not easily extractable, even more when the extraction is to be automatically done. Nevertheless they can be manually processed.

As mentioned before, face recognition is a concrete example of an application
that tries to automatically obtain this information.

时间: 2024-11-05 18:58:47

low level descriptors and high level descriptors的相关文章

设计与实现的简单和经常使用的权限系统(五岁以下儿童):不维护节点的深度level,手工计算level,树形结构

以这种方式.和第三的类似介绍.所不同的是.深度未在数据库中存储节点level,添加和更改时间,护.而是,在程序中,实时去计算的. 至于后面的,依照level升序排序,再迭代全部的节点构造树,与第三篇中的方法,全然一样.因此,本篇和下一篇,仅仅介绍怎样计算level.不再介绍后面的详细实现了. 计算level,採用递归方式. // 计算全部节点的level public static List<Map<String, Object>> caculateLevel( List<M

简洁常用权限系统的设计与实现(五):不维护节点的深度level,手动计算level,构造树

这种方式,与第三篇中介绍的类似.不同的是,数据库中不存储节点的深度level,增加和修改时,也不用维护.而是,在程序中,实时去计算的. 至于后面的,按照level升序排序,再迭代所有的节点构造树,与第三篇中的方法,完全一样.因此,本篇和下一篇,只介绍如何计算level,不再介绍后面的具体实现了. 计算level,采用递归方式. // 计算所有节点的level public static List<Map<String, Object>> caculateLevel( List<

同步块中对象级别的锁和类级别的锁 —— Thread synchronization, object level locking and class level locking

Java supports multiple threads to be executed. This may cause two or more threads to access the same fields or objects. Synchronization is a process which keeps all concurrent threads in execution to be in synch. Synchronization avoids memory consist

HBV DNA level _data analysis

HBV 表明抗原阳性是HCC最重要风险因子 Seropositivity for the hepatitis B surface antigen (HBsAg) is one of the most important risk factors for hepatocellular carcinoma hbv e 抗原阳性会增加HCC风险 In our previous study, seropositivity for the hepatitis B e antigen (HBeAg) was

LoadRunner的Capture Level

场景:录制loadrunner的web站点 问题:录制的过程中发现除了页面正常的请求外还有些看不懂的请求(包含乱码),脚本如下: web_url("WebTours", "URL=http://127.0.0.1:1080/WebTours/", "Resource=0", "RecContentType=text/html", "Referer=", "Snapshot=t14.inf"

[LeetCode] Binary Tree Level Order Traversal

A classic tree traversal problem. I share my two solutions here: BFS and DFS. BFS: 1 vector<vector<int>> levelOrder(TreeNode *root) { 2 vector<vector<int>> levels; 3 if(!root) return levels; 4 queue<TreeNode*> toVisit; 5 toVi

HDU 3954 Level up 线段树

---NotOnlySuccess 出的题--- 看了题之后觉得和HDU 4027有点像,给的K很小,只有10,目测只要有人升级的时候直接更新到叶子节点就ok了.不过不同于HDU 4027 的是,那题每一次更新都相当于这题的一次升级操作,这题里面可能会出现一次操作之后没有升级和出现升级两种情况,一时半会没了思路. 无奈去搜题解,发现我只要维护一个区间当中距离升级最近的人所需要的基础升级经验,即不算等级加成的裸的升级经验,如果在一次涨经验之后,出现当前区间当中有人会升级,直接将每一个要升级的人更新

software level

1. Works when no one is watching When the requirements are completely out of control, many programmers celebrate even having reached this point. 2. Works if you do it just right Too many applications, most not written in Perl, make it to this point a

[leetcode] 9. Binary Tree Level Order Traversal

跟第七题一样,把最后的输出顺序换一下就行... Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level). For example:Given binary tree {3,9,20,#,#,15,7}, 3 / 9 20 / 15 7 return its level order traversal as: [ [3],