矩阵入门知识(转)

好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。
    不
要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到
的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比
如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:
    
    下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:
    

矩阵乘法的两个重要性质:一,矩阵乘法不满足
换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什么它又满足结合律呢?仔细想想你会发现
这也是废话。假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚
举所有的k和l)。

经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转
    这
里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时
O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。
假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以
(x,y,1),即可一步得出最终点的位置。
    

经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。
    由
于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 *
A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) *
A^(n/2) * A
(其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、
A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。

经典题目3 POJ3233 (感谢rmq)
    题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。
    这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有:
    A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)
    应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

经典题目4 VOJ1049
    题目大意:顺次给出m个置换,反复使用这m个置换对初始序列进行操作,问k次置换后的序列。m<=10, k<2^31。
    首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们需要执行这个置换k/m次(取整,若有余数则剩下几步模拟即可)。注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:
    
    置换k/m次就相当于在前面乘以k/m个这样的矩阵。我们可以二分计算出该矩阵的k/m次方,再乘以初始序列即可。做出来了别忙着高兴,得意之时就是你灭亡之日,别忘了最后可能还有几个置换需要模拟。

经典题目5 《算法艺术与信息学竞赛》207页(2.1代数方法和模型,[例题5]细菌,版次不同可能页码有偏差)
    大家自己去看看吧,书上讲得很详细。解题方法和上一题类似,都是用矩阵来表示操作,然后二分求最终状态。

经典题目6 给定n和p,求第n个Fibonacci数mod p的值,n不超过2^31
    根
据前面的一些思路,现在我们需要构造一个2 x
2的矩阵,使得它乘以(a,b)得到的结果是(b,a+b)。每多乘一次这个矩阵,这两个数就会多迭代一次。那么,我们把这个2 x
2的矩阵自乘n次,再乘以(0,1)就可以得到第n个Fibonacci数了。不用多想,这个2 x 2的矩阵很容易构造出来:
    

经典题目7 VOJ1067
    我
们可以用上面的方法二分求出任何一个线性递推式的第n项,其对应矩阵的构造方法为:在右上角的(n-1)*(n-1)的小矩阵中的主对角线上填1,矩阵第
n行填对应的系数,其它地方都填0。例如,我们可以用下面的矩阵乘法来二分计算f(n) = 4f(n-1) - 3f(n-2) +
2f(n-4)的第k项:
    
    利用矩阵乘法求解线性递推关系的题目我能编出一卡车来。这里给出的例题是系数全为1的情况。

经典题目8 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值
    把
给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就
等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的
路径数,我们只需要二分求出A^k即可。

经典题目9 用1 x 2的多米诺骨牌填满M x N的矩形有多少种方案,M<=5,N<2^31,输出答案mod p的结果
    
    我
们以M=3为例进行讲解。假设我们把这个矩形横着放在电脑屏幕上,从右往左一列一列地进行填充。其中前n-2列已经填满了,第n-1列参差不齐。现在我们
要做的事情是把第n-1列也填满,将状态转移到第n列上去。由于第n-1列的状态不一样(有8种不同的状态),因此我们需要分情况进行讨论。在图中,我把
转移前8种不同的状态放在左边,转移后8种不同的状态放在右边,左边的某种状态可以转移到右边的某种状态就在它们之间连一根线。注意为了保证方案不重复,
状态转移时我们不允许在第n-1列竖着放一个多米诺骨牌(例如左边第2种状态不能转移到右边第4种状态),否则这将与另一种转移前的状态重复。把这8种状
态的转移关系画成一个有向图,那么问题就变成了这样:从状态111出发,恰好经过n步回到这个状态有多少种方案。比如,n=2时有3种方案,111-&
gt;011->111、111->110->111和111->000->111,这与用多米诺骨牌覆盖3x2矩形的方
案一一对应。这样这个题目就转化为了我们前面的例题8。
    后面我写了一份此题的源代码。你可以再次看到位运算的相关应用。

经典题目10 POJ2778
    题目大意是,检测所有可能的n位DNA串有多少个DNA串中不含有指定的病毒片段。合法的DNA只能由ACTG四个字符构成。题目将给出10个以内的病毒片段,每个片段长度不超过10。数据规模n<=2 000 000 000。
    下
面的讲解中我们以ATC,AAA,GGC,CT这四个病毒片段为例,说明怎样像上面的题一样通过构图将问题转化为例题8。我们找出所有病毒片段的前缀,把
n位DNA分为以下7类:以AT结尾、以AA结尾、以GG结尾、以?A结尾、以?G结尾、以?C结尾和以??结尾。其中问号表示“其它情况”,它可以是任
一字母,只要这个字母不会让它所在的串成为某个病毒的前缀。显然,这些分类是全集的一个划分(交集为空,并集为全集)。现在,假如我们已经知道了长度为
n-1的各类DNA中符合要求的DNA个数,我们需要求出长度为n时各类DNA的个数。我们可以根据各类型间的转移构造一个边上带权的有向图。例如,从
AT不能转移到AA,从AT转移到??有4种方法(后面加任一字母),从?A转移到AA有1种方案(后面加个A),从?A转移到??有2种方案(后面加G
或C),从GG到??有2种方案(后面加C将构成病毒片段,不合法,只能加A和T)等等。这个图的构造过程类似于用有限状态自动机做串匹配。然后,我们就
把这个图转化成矩阵,让这个矩阵自乘n次即可。最后输出的是从??状态到所有其它状态的路径数总和。
    题目中的数据规模保证前缀数不超过100,一次矩阵乘法是三方的,一共要乘log(n)次。因此这题总的复杂度是100^3 * log(n),AC了。

最后给出第9题的代码供大家参考(今天写的,熟悉了一下C++的类和运算符重载)。为了避免大家看代码看着看着就忘了,我把这句话放在前面来说:
    Matrix67原创,转贴请注明出处。

#include <cstdio>
#define SIZE (1<<m)
#define MAX_SIZE 32
using namespace std;

class CMatrix
{
    public:
        long element[MAX_SIZE][MAX_SIZE];
        void setSize(int);
        void setModulo(int);
        CMatrix operator* (CMatrix);
        CMatrix power(int);
    private:
        int size;
        long modulo;
};

void CMatrix::setSize(int a)
{
    for (int i=0; i<a; i++)
        for (int j=0; j<a; j++)
            element[i][j]=0;
    size = a;
}

void CMatrix::setModulo(int a)
{
    modulo = a;
}

CMatrix CMatrix::operator* (CMatrix param)
{
    CMatrix product;
    product.setSize(size);
    product.setModulo(modulo);
    for (int i=0; i<size; i++)
        for (int j=0; j<size; j++)
            for (int k=0; k<size; k++)
            {
                product.element[i][j]+=element[i][k]*param.element[k][j];
                product.element[i][j]%=modulo;
            }

    return product;
}

CMatrix CMatrix::power(int exp)
{
    CMatrix tmp = (*this) * (*this);
    if (exp==1) return *this;
    else if (exp & 1) return tmp.power(exp/2) * (*this);
    else return tmp.power(exp/2);
}

int main()
{
    const int validSet[]={0,3,6,12,15,24,27,30};
    long n, m, p;
    CMatrix unit;

    scanf("%d%d%d", &n, &m, &p);
    unit.setSize(SIZE);
    for(int i=0; i<SIZE; i++)
        for(int j=0; j<SIZE; j++)
            if( ((~i)&j) == ((~i)&(SIZE-1)) )
            {
                bool isValid=false;
                for (int k=0; k<8; k++)isValid=isValid||(i&j)==validSet[k];
                unit.element[i][j]=isValid;
            }

    unit.setModulo(p);
    printf("%d", unit.power(n).element[SIZE-1][SIZE-1] );
    return 0;
}

时间: 2024-10-02 16:55:43

矩阵入门知识(转)的相关文章

Matlab随笔之矩阵入门知识

直接输入法创建矩阵 – 矩阵的所有元素必须放在方括号“[ ]”内: – 矩阵列元素之间必须用逗号“,”或空格隔开,每行必须用“;”隔开 – 矩阵元素可以是任何不含未定义变量的表达式.可以是实数,或者是复数. – 例a=[1,2;3,4] 或 a=[2 1+3j;sqrt(4) 5] 创建基本矩阵的函数 – 空阵 [ ] — matlab允许输入空阵,当一项操作无结果时,返回空阵 – ones(N,M) —全部元素都为1的矩阵 – zeros(N,M) —全部元素都为0的矩阵 – rand(N,M

ESB (Enterprise Service Bus)入门知识

本文主要介绍ESB相关的一些技术概念与术语,还有一些入门的需要了解的基础知识,并初步了解介绍一些ESB产品.由于本人刚接触ESB,所以将自己的学习内容与过程,记录下来!愿在这里与大家分享一下,共同进步与提高! [转载使用,请注明出处:http://blog.csdn.net/mahoking] EAI 企业应用集成(Enterprise Application Integration):是完成在组织内.外的各种异构系统.应用和数据源之间共享.交换信息.协作的途径,方法学,标准和技术. 所连接的应

债券入门知识

可参考此链接: http://www.jisilu.cn/topic/%E4%BC%81%E4%B8%9A%E5%80%BA%E6%85%A2%E8%B0%88 国债: 凭证式国债: 国家采取不印刷实物券,而用填制国库券收款凭证的方式发行的国债.它是以国债收款凭单的形式来作为债权证明,不可上市流通转让,从购买之日起计息.在持有期内,持券人如遇特殊情况需要握取现金,可以到购买网点提前兑取.提前兑取时,除偿还本金外,利息按实际持有天数及相应的利率档次计算.凭证式国债在银行柜台凭身份证购买,与银行定期

基金入门知识

1. 基金是什么? 基金就是代大家理财的一个产品.比如股票型基金,就是把大家的钱收集起来,由买股经验丰富的基金经理帮大家买股票. 2. 基金产品靠什么挣钱? 基金依靠用户买入和赎回基金份额时的手续费,还有交纳的管理费等挣钱.如果某基金经理非常牛B,给投资人带来了丰厚的回报,那么买这支产品的人就越来越多,这样基金产品就越来越赚钱.相反,如果基金产品投资管理不善,给投资人带来了损失,那么买这支产品的人就是越来越少,可用于投资的钱就是越来越少,进一步削弱提高收益的可能性.基金产品并不直接从投资行为中挣

移动H5开发入门知识,CSS的单位汇总与用法

说到css的单位,大家应该首先想到的是px,也就是像素,我们在网页布局中一般都是用px,但是近年来自适应网页布局越来越多,em和百分比也经常用到了.然后随着手机的流行,web app和hybrid app的开发,都用到了css3技术,在css3中,新增了许多单位,rem.vw和vh.vmin和vmax.ch和ex等等,那现在对这些单位分别做一下详细的介绍吧. 1.em 做前端的应该对em不陌生,不是什么罕见的单位,是相对单位,参考物是父元素的font-size,具有继承的特点.如果字体大小是16

requirejs入门知识整理

使用模块化开发处理的三大问题: 1.命名冲突:2.繁琐的文件依赖 3.实现异步非阻塞的文件加载,避免网页失去响应 模块化的设计使得JavaScript代码在需要访问“全局变量”的时候,都可以通过依赖关系,把这些“全局变量”作为参数传递到模块的实现体里,在实现中就避免了访问或者声明全局的变量或者函数,有效的避免大量而且复杂的命名空间管理. requirejs以一个相对于baseUrl的地址来加载所有的代码.如果用了data-main属性,则该路径就是baseUrl,baseUrl亦可通过requi

Unity入门知识

参考书:<Unity3D 游戏开发> scene图中按F键:放大,居中当前选中的物体 坐标轴:红-x轴,绿-y轴,蓝-z轴 逐帧运行程序: OnGUI:可以用来画界面 高级控件 or 低级控件? Label控件也可以贴图 只有脚本的公有变量才可以在编辑器中直接赋值.Texture.String等 游戏界面可以由若干个窗口组成,而每个窗口又由若干个视图组成.创建窗口时需要设定他的显示区域,在窗口中可以添加任意组件,前提是组件的显示区域必须在窗口当中,否则无法显示.另外,窗口中的所有控件都采用相对

MySQL入门知识

简单介绍下吧,MySQL应用的场景大多数互联网公司第一次卖身是卖个了sun好像是10亿,第二次是连同sun自己,以74亿美元被卖给了Orecle~后面MySQL原作者站出来说,MySQL会存在闭源风险,整了个MariaDB~我也是醉了,也不考虑下我们的痛苦!下面简要介绍下MySQL的入门知识. 一.MySQL有三种定义语言 DDL:定义语言,比如:创建一张表,定义表的属性如索引.宽位等待 DML:操作语言,增删查改 DCL:控制语言,比如限定那个账户只能通过那个IP登入,又比如那个账户能访问那些

前端制作入门知识

原文链接:http://caibaojian.com/frontend-base.html 前端制作入门知识 A-A+ 前端博客•2015-08-18•前端开发•CSS | 前端基础•2020View1 文章目录 一.名词解释 二.文本格式化 三.表单表格 四.文本格式化 五.CSS布局 六.html5视频音频 七.一些约定 八.命名空间 九.基本设置-public.css 十.框架设置 来自百度文库:web前端学习总结(精华版),里面讲了许多的知识,非常适合刚进入前端的童鞋,就算一些有点基础的