洛谷—— P2196 挖地雷

https://www.luogu.org/problem/show?pid=2196

题目背景

NOIp1996提高组第三题

题目描述

在一个地图上有N个地窖(N<=20),每个地窖中埋有一定数量的地雷。同时,给出地窖之间的连接路径。当地窖及其连接的数据给出之后,某人可以从任一处开始挖地雷,然后可以沿着指出的连接往下挖(仅能选择一条路径),当无连接时挖地雷工作结束。设计一个挖地雷的方案,使某人能挖到最多的地雷。

输入输出格式

输入格式:

输入文件mine.in有若干行。

第1行只有一个数字,表示地窖的个数N。

第2行有N个数,分别表示每个地窖中的地雷个数。

第3行至第N+1行表示地窖之间的连接情况:

第3行有n-1个数(0或1),表示第一个地窖至第2个、第3个、…、第n个地窖有否路径连接。如第3行为1 1 0 0 0 … 0,则表示第1个地窖至第2个地窖有路径,至第3个地窖有路径,至第4个地窖、第5个、…、第n个地窖没有路径。

第4行有n-2个数,表示第二个地窖至第3个、第4个、…、第n个地窖有否路径连接。

… …

第n+1行有1个数,表示第n-1个地窖至第n个地窖有否路径连接。(为0表示没有路径,为1表示有路径)。

输出格式:

输出文件wdl.out有两行数据。

第一行表示挖得最多地雷时的挖地雷的顺序,各地窖序号间以一个空格分隔,不得有多余的空格。

第二行只有一个数,表示能挖到的最多地雷数。

输入输出样例

输入样例#1:

5
10 8 4 7 6
1 1 1 0
0 0 0
1 1
1

输出样例#1:

1 3 4 5
27

建立超级源点s,从s跑一边最短路,记录每个在最短路上的点的前驱、处理一下输出便可、
 1 #include <cstdio>
 2 #include <queue>
 3
 4 #define max(a,b) (a>b?a:b)
 5 inline void read(int &x)
 6 {
 7     x=0; register char ch=getchar();
 8     for(; ch>‘9‘||ch<‘0‘; ) ch=getchar();
 9     for(; ch>=‘0‘&&ch<=‘9‘; ch=getchar()) x=x*10+ch-‘0‘;
10 }
11 const int INF(0x3f3f3f3f);
12 const int N(26);
13 int val[N],head[N],sumedge;
14 struct Edge {
15     int v,next,w;
16     Edge(int v=0,int next=0,int w=0):v(v),next(next),w(w){}
17 }edge[N*N];
18 inline void ins(int u,int v,int w)
19 {
20     edge[++sumedge]=Edge(v,head[u],w); head[u]=sumedge;
21 }
22
23 bool inq[N];
24 int dis[N],pre[N],ans[N];
25 std::queue<int>que;
26 inline void SPFA(int s)
27 {
28     que.push(s);
29     for(int u,v; !que.empty(); )
30     {
31         u=que.front(); que.pop(); inq[u]=0;
32         for(int i=head[u]; i; i=edge[i].next)
33         {
34             v=edge[i].v;
35             if(dis[v]<dis[u]+edge[i].w)
36             {
37                 pre[v]=u;
38                 dis[v]=dis[u]+edge[i].w;
39                 if(!inq[v]) inq[v]=1,que.push(v);
40             }
41         }
42     }
43 }
44
45 int Presist()
46 {
47     int n; read(n);
48     for(int i=1; i<=n; ++i)
49         read(val[i]),ins(0,i,val[i]);
50     for(int i=1,x; i<n; ++i)
51       for(int j=i+1; j<=n; ++j)
52         { read(x); if(x) ins(i,j,val[j]); }
53     SPFA(0); int maxdis=0,t,cnt=0;
54     for(int i=1; i<=n; ++i)
55         if(maxdis<dis[i]) maxdis=dis[t=i];
56     for(; t; t=pre[t]) ans[++cnt]=t;
57     for(int i=cnt; i; --i) printf("%d ",ans[i]);
58     printf("\n%d",maxdis);
59     return 0;
60 }
61
62 int Aptal=Presist();
63 int main(int argc,char*argv[]){;}
时间: 2024-10-31 12:26:36

洛谷—— P2196 挖地雷的相关文章

洛谷——P2196 挖地雷

题目背景 NOIp1996提高组第三题 题目描述 在一个地图上有N个地窖(N<=20),每个地窖中埋有一定数量的地雷.同时,给出地窖之间的连接路径.当地窖及其连接的数据给出之后,某人可以从任一处开始挖地雷,然后可以沿着指出的连接往下挖(仅能选择一条路径),当无连接时挖地雷工作结束.设计一个挖地雷的方案,使某人能挖到最多的地雷. 输入输出格式 输入格式: 输入文件mine.in有若干行. 第1行只有一个数字,表示地窖的个数N. 第2行有N个数,分别表示每个地窖中的地雷个数. 第3行至第N+1行表示

洛谷 P2709 BZOJ 3781 小B的询问

题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小B请你帮助他回答询问. 输入输出格式 输入格式: 第一行,三个整数N.M.K. 第二行,N个整数,表示小B的序列. 接下来的M行,每行两个整数L.R. 输出格式: M行,每行一个整数,其中第i行的整数表示第i个询问的答案. 输入输出样例 输入样例#1: 6 4 3 1 3 2 1 1 3

洛谷1231 教辅的组成

洛谷1231 教辅的组成 https://www.luogu.org/problem/show?pid=1231 题目背景 滚粗了的HansBug在收拾旧语文书,然而他发现了什么奇妙的东西. 题目描述 蒟蒻HansBug在一本语文书里面发现了一本答案,然而他却明明记得这书应该还包含一份练习题.然而出现在他眼前的书多得数不胜数,其中有书,有答案,有练习册.已知一个完整的书册均应该包含且仅包含一本书.一本练习册和一份答案,然而现在全都乱做了一团.许多书上面的字迹都已经模糊了,然而HansBug还是可

洛谷教主花园dp

洛谷-教主的花园-动态规划 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值. 教主最喜欢3种树,这3种树的高度分别为10,20,30.教主希望这一圈树种得有层次感,所以任何一个位置的树要比它相邻的两棵树的高度都高或者都低,并且在此条件下,教主想要你设计出一套方案,使得观赏价值之和最高. 输入输出格式 输入格式: 输入文件garden.in的第1行为一个正整数n,表示需要种的

洛谷 P2801 教主的魔法 题解

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置. 题目链接:https://www.luogu.org/problem/show?pid=2801 题目描述 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的身高一开始都是不超过1000的正整数.教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W.(虽然L=R时并不

洛谷P1466 集合 Subset Sums

洛谷P1466 集合 Subset Sums这题可以看成是背包问题 用空间为 1--n 的物品恰好填充总空间一半的空间 有几种方案 01 背包问题 1.注意因为两个交换一下算同一种方案,所以最终 要 f [ v ] / 2 2.要开 long long 1 #include <cstdio> 2 #include <cstdlib> 3 #include <cmath> 4 #include <cstring> 5 #include <string&g

洛谷P1160 队列安排 链表

洛谷P1160 队列安排   链表 1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <cstdlib> 5 #include <string> 6 #include <algorithm> 7 #include <iomanip> 8 #include <iostream> 9 using namespace std

洛谷 P3367 并查集模板

#include<cstdio> using namespace std; int n,m,p; int father[2000001]; int find(int x) { if(father[x]!=x) father[x]=find(father[x]); return father[x]; } void unionn(int i,int j) { father[j]=i; } int main() { scanf("%d%d",&n,&m); for

[题解]洛谷比赛『期末考后的休闲比赛2』

[前言] 这场比赛已经结束了有几天,但我各种忙,虽然AK但还是没来得及写题解.(我才不会告诉你我跑去学数据结构了) T1 区间方差 (就不贴题好了) 首先可以推公式(我们可以知道,线段树然而并不能通过初中学过的方差公式在log(L)内求出方差): (s2表示方差,L表示区间长度,xi表示区间的每一项,最后一个x上画了一根线表示这些数据的平均数) 用二项式定理完全平方公式可得: 再次展开: 另外,再代入以下这个 得到了: 然后继续吧.. 然后duang地一声合并同类项,于是我们得到了: 然后可以高