Bellman-Ford算法——求解单源点最短路径问题

Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题。Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些。但是,原始的Bellman-Ford算法时间复杂度为O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的《算法导论》也只介绍了基本的Bellman-Ford算法,在国内常见的基本信息学奥赛教材中也均未提及,因此该算法的知名度与被掌握度都不如Dijkstra算法。事实上,有多种形式的Bellman-Ford算法的优化实现。这些优化实现在时间效率上得到相当提升,例如近一两年被热捧的SPFA(Shortest-Path Faster Algoithm 更快的最短路径算法)算法的时间效率甚至由于Dijkstra算法,因此成为信息学奥赛选手经常讨论的话题。然而,限于资料匮乏,有关Bellman-Ford算法的诸多问题常常困扰奥赛选手。如:该算法值得掌握么?怎样用编程语言具体实现?有哪些优化?与SPFA算法有关系么?本文试图对Bellman-Ford算法做一个比较全面的介绍。给出几种实现程序,从理论和实测两方面分析他们的时间复杂度,供大家在备战省选和后续的noi时参考。

Dijkstra算法无法处理负权边

dijkstra由于是贪心的,每次都找一个距源点最近的点(dmin),然后将该距离定为这个点到源点的最短路径(d[i]<--dmin);但如果存在负权边,那就有可能先通过并不是距源点最近的一个次优点(dmin‘),再通过这个负权边L(L<0),使得路径之和更小(dmin‘+L<dmin),则dmin‘+L成为最短路径,并不是dmin,这样dijkstra就被囧掉了。
比如n=3,邻接矩阵:
0,3,4
3,0,-2
4,-2,0
用dijkstra求得d[1,2]=3,事实上d[1,2]=2,就是通过了1-3-2使得路径减小。

Bellman-Ford算法思想

Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图 G=(V,E),其源点为s,加权函数 w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。

Bellman-Ford算法流程分为三个阶段:

(1)    初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;

(2)    迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)

(3)    检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。

算法描述如下:

Bellman-Ford(G,w,s) :boolean   //图G ,边集 函数 w ,s为源点

        for each vertex v ∈ V(G) do        //初始化 1阶段

            d[v] ←+∞

        d[s] ←0;                             //1阶段结束

        for i=1 to |v|-1 do               //2阶段开始,双重循环。

           for each edge(u,v) ∈E(G) do //边集数组要用到,穷举每条边。

              If d[v]> d[u]+ w(u,v) then      //松弛判断

                 d[v]=d[u]+w(u,v)               //松弛操作   2阶段结束

        for each edge(u,v) ∈E(G) do

            If d[v]> d[u]+ w(u,v) then

            Exit false

    Exit true

下面给出描述性证明:

首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。

其次,从源点s可达的所有顶点如果 存在最短路径,则这些最短路径构成一个以s为根的最短路径树。Bellman-Ford算法的迭代松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵最短路径树的过程。

  在对每条边进行1遍松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,找到了与s至多有1条边相联的那些顶点的最短路径;对每条边进行第2遍松弛的时候,生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为最短路径最多只包含|v|-1 条边,所以,只需要循环|v|-1 次。

  每实施一次松弛操作,最短路径树上就会有一层顶点达到其最短距离,此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。(但是,每次还要判断松弛,这里浪费了大量的时间,怎么优化?单纯的优化是否可行?)

  如果没有负权回路,由于最短路径树的高度最多只能是|v|-1,所以最多经过|v|-1遍松弛操作后,所有从s可达的顶点必将求出最短距离。如果 d[v]仍保持 +∞,则表明从s到v不可达。

  如果有负权回路,那么第 |v|-1 遍松弛操作仍然会成功,这时,负权回路上的顶点不会收敛。

三、基本算法之上的优化

分析 Bellman-Ford算法,不难看出,外层循环(迭代次数)|v|-1实际上取得是上限。由上面对算法正确性的证明可知,需要的迭代遍数等于最短路径树的高度。如果不存在负权回路,平均情况下的最短路径树的高度应该远远小于 |v|-1,在此情况下,多余最短路径树高的迭代遍数就是时间上的浪费,由此,可以依次来实施优化。

从细节上分析,如果在某一遍迭代中,算法描述中第7行的松弛操作未执行,说明该遍迭代所有的边都没有被松弛。可以证明(怎么证明?):至此后,边集中所有的边都不需要再被松弛,从而可以提前结束迭代过程。这样,优化的措施就非常简单了。

设定一个布尔型标志变量 relaxed,初值为false。在内层循环中,仅当有边被成功松弛时,将 relaxed 设置为true。如果没有边被松弛,则提前结束外层循环。这一改进可以极大的减少外层循环的迭代次数。优化后的bellman-ford函数如下。

function bellmanford(s:longint):boolean;

     begin

        for i:=1 to nv do

          d[i]:=max;

        d[s]:=0;

        for i:=1 to nv-1 do

         begin

           relaxed:=false;

            for j:=1 TO ne do

              if(d[edges[j].s]<>max) and (d[edges[j].e]>d[edges[j].s]+edges[j].w)

                 then begin

            d[edges[j].e]:=d[edges[j].s]+edges[j].w ;

            relaxed:=true;

                 end;

           if not relaxed then break;

     end;

        for i:=1 to ne do

          if d[edges[j].e]>d[edges[j].s]+edges[j].w then exit(false);

        exit(true);

     end;

这样看似平凡的优化,会有怎样的效果呢?有研究表明,对于随机生成数据的平均情况,时间复杂度的估算公式为

1.13|E|                    if |E|<|V|

0.95*|E|*lg|V|              if |E|>|V|

优化后的算法在处理有负权回路的测试数据时,由于每次都会有边被松弛,所以relaxed每次都会被置为true,因而不可能提前终止外层循环。这对应了最坏情况,其时间复杂度仍旧为O(VE)。

优化后的算法的时间复杂度已经和用二叉堆优化的Dijkstra算法相近了,而编码的复杂程度远比后者低。加之Bellman-Ford算法能处理各种边值权情况下的最短路径问题,因而还是非常优秀的。Usaco3.2.6 的程序见bellmanford_1.pas

四、SPFA 算法

SPFA是目前相当优秀的求最短路径的算法,值得我们掌握。

SPFA对Bellman-Ford算法优化的关键之处在于意识到:只有那些在前一遍松弛中改变了距离估计值的点,才可能引起他们的邻接点的距离估计值的改变。因此,用一个先进先出的队列来存放被成功松弛的顶点。初始时,源点s入队。当队列不为空时,取出对首顶点,对它的邻接点进行松弛。如果某个邻接点松弛成功,且该邻接点不在队列中,则将其入队。经过有限次的松弛操作后,队列将为空,算法结束。SPFA算法的实现,需要用到一个先进先出的队列 queue 和一个指示顶点是否在队列中的 标记数组 mark。为了方便查找某个顶点的邻接点,图采用临界表存储。

程序存储在 spfa.pas中。以usaco 3.2.6 试题2为例。用邻接表写的程序。

需要注意的是:仅当图不存在负权回路时,SPFA能正常工作。如果图存在负权回路,由于负权回路上的顶点无法收敛,总有顶点在入队和出队往返,队列无法为空,这种情况下SPFA无法正常结束。

判断负权回路的方案很多,世间流传最广的是记录每个结点进队次数,超过|V|次表示有负权
还有一种方法为记录这个结点在路径中处于的位置,ord[i],每次更新的时候ord[i]=ord[x]+1,若超过|V|则表示有负圈.....
其他方法还有很多,我反倒觉得流传最广的方法是最慢的.......

关于SPFA的时间复杂度,不好准确估计,一般认为是 O(kE),k是常数

五、时间效率实测

上述介绍的Bellman-Ford算法及两种的优化,只是在理论上分析了时间复杂度,用实际的数据测试,会有什么结果呢?为此,我们选择 usaco 3.2.6。

Spfa的时间效率还是很高的。并且spfa的编程复杂度要比Dijksta+heap优化要好的多。

时间: 2024-08-09 21:51:16

Bellman-Ford算法——求解单源点最短路径问题的相关文章

算法基础 - 单源点最短路径SPFA

SPFA是非常简单的最短路径算法,思想就是从起点开始,进行宽度优先搜索,不断松弛S点到其他相邻点的距离.如果松弛了点B,则把点B放到队列里.假如点B已经在队列里了,就不要放了,判断在不在队列可以用个数组来表示. 引用一段hihocoder上的解释: 构造一个队列,最开始队列里只有(S, 0)--表示当前处于点S,从点S到达该点的距离为0,然后每次从队首取出一个节点(i, L)--表示当前处于点i,从点S到达该点的距离为L,接下来遍历所有从这个节点出发的边(i, j, l)--表示i和j之间有一条

Ford算法(单源最短路径)

优点:代码较少,复杂度不高,可以判断是否会有负环. 缺点:效率低. 算法阐述: 这个算法的思想非常简单,首先它是根据从起点向与它相连的线段开始刷新,只要满足刷新后的路径比原有路径小的话,那么就立即更新这个数据,是这个数据作为新的数 据.同时这个算法有一个很重要的优势,那就是可以判断有没有负环的存在. 负环判断原理: 这个算法的代码我在下面会有一个代码的描述,这个算法是通过一个整体的更新来实现查找最短的路径,那么这里面就有一个关于这个算法的更新次数的问题,首先一个确定 下来的顶点它向它周围进行一个

Dijkstra算法求单源最短路径

1.最短路径 在一个连通图中,从一个顶点到另一个顶点间可能存在多条路径,而每条路径的边数并不一定相同.如果是一个带权图,那么路径长度为路径上各边的权值的总和.两个顶点间路径长度最短的那条路径称为两个顶点间的最短路径,其路径长度称为最短路径长度. 最短路径在实际中有重要的应用价值.如用顶点表示城市,边表示两城市之间的道路,边上的权值表示两城市之间的距离.那么城市A到城市B连通的情况下,哪条路径距离最短呢,这样的问题可以归结为最短路径问题. 求最短路径常见的算法有Dijkstra算法和Floyd算法

Bellman - Ford 算法解决最短路径问题

Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力不从心了,而Bellman - Ford算法可以解决这种问题. Bellman - Ford 算法可以处理路径权值为负数时的单源最短路径问题.设想可以从图中找到一个环路且这个环路中所有路径的权值之和为负.那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去.如果不处理这个负环路,程序就会永远运

单源点最短路径的Dijkstra算法

在带权图(网)里,点A到点B所有路径中边的权值之和为最短的那一条路径,称为A,B两点之间的最短路径;并称路径上的第一个顶点为源点(Source),最后一个顶点为终点(Destination).在无权图中,最短路径则是两点之间经历的边数最少的路径.实际上,只要把无权图上的每条边都看成是权值为1的边,那么无权图和带权图的最短路径是一致的. 给定一个带权有向图G=(V,E),指定图G中的某一个顶点的V为源点,求出从V到其他各顶点之间的最短路径,这个问题称为单源点最短路径问题. 迪杰斯特拉(Dijkst

Bellman—Ford算法思想

---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G运行Bellman—Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路.若存在负权回路,单源点最短路径问题无解:若不存在这样的回路,算法将给出从源点s到图G的任意顶点v的最短路径值d[v] Bellman—Ford算法流程 分为三个阶段: (1)初始化:将除源点外的所有顶点

Dijkstra求解单源最短路径

Dijkstra(迪杰斯特拉)单源最短路径算法 Dijkstra思想 Dijkstra是一种求单源最短路径的算法. Dijkstra仅仅适用于非负权图,但是时间复杂度十分优秀. Dijkstra算法主要思想是: 主要思想是,将结点分成两个集合:已确定最短路长度的,未确定的. 一开始第一个集合里只有节点V. 然后重复这些操作: 1.对那些刚刚被加入第一个集合的结点的所有出边执行松弛操作. 2.从第二个集合中,选取一个最短路长度最小的结点,移到第一个集合中. 用暴力算法的时间复杂度是Ο(n2+m)

GraphX中Pregel单源点最短路径(转)

原文链接:GraphX中Pregel单源点最短路径 GraphX中的单源点最短路径例子,使用的是类Pregel的方式. 核心部分是三个函数: 1.节点处理消息的函数  vprog: (VertexId, VD, A) => VD (节点id,节点属性,消息) => 节点属性 2.节点发送消息的函数 sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId,A)]   (边元组) => Iterator[(目标节点id,消息)] 3.消息合

数据结构与算法问题 单源最短路径 浙大OJ

题目描述: 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的. 输入: 输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p.最后一行是两个数 s,t;起点s,终点t.n和m为0时输入结束. (1<n<=1000, 0<m<100000, s != t) 输出: 输出 一行有两个数, 最短距离及其花费. 样例输入: 3 2