/// <summary>
/// Use recursive method to implement Fibonacci
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static int Fn(int n)
{
if (n <= 0)
{
throw new ArgumentOutOfRangeException();
}
if (n == 1||n==2)
{
return 1;
}
return checked(Fn(n - 1) + Fn(n - 2)); // when n>46 memory will overflow
}
递归算法时间复杂度是O(n2), 空间复杂度也很高的。当然不是最优的。
自然我们想到了非递归算法了。
一般的实现如下:
/// <summary>
/// Use three variables to implement Fibonacci
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static int Fn1(int n)
{
if (n <= 0)
{
throw new ArgumentOutOfRangeException();
}
int a = 1;
int b = 1;
int c = 1;
for (int i = 3; i <= n; i++)
{
c = checked(a + b); // when n>46 memory will overflow
a = b;
b = c;
}
return c;
}
这里算法复杂度为之前的1/n了,比较不错哦。但是还有可以改进的地方,我们可以用两个局部变量来完成,看下吧:
/// <summary>
/// Use less variables to implement Fibonacci
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
static int Fn2(int n)
{
if (n <= 0)
{
throw new ArgumentOutOfRangeException();
}
int a = 1;
int b = 1;
for (int i = 3; i <= n; i++)
{
b = checked(a + b); // when n>46 memory will overflow
a = b - a;
}
return b;
}
好了,这里应该是最优的方法了。
值得注意的是,我们要考虑内存泄漏问题,因为我们用int类型来保存Fibonacci的结果,所以n不能大于46(32位操作系统)