洛谷——P2149 [SDOI2009]Elaxia的路线

P2149 [SDOI2009]Elaxia的路线

题目描述

最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间。Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长。 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间。 具体地说,就是要求无向图中,两对点间最短路的最长公共路径。

输入输出格式

输入格式:

第一行:两个整数N和M(含义如题目描述)。 第二行:四个整数x1、y1、x2、y2(1 ≤ x1 ≤ N,1 ≤ y1 ≤ N,1 ≤ x2 ≤ N,1 ≤ ≤ N),分别表示Elaxia的宿舍和实验室及w**的宿舍和实验室的标号(两对点分别 x1,y1和x2,y2)。 接下来M行:每行三个整数,u、v、l(1 ≤ u ≤ N,1 ≤ v ≤ N,1 ≤ l ≤ 10000),表 u和v之间有一条路,经过这条路所需要的时间为l。

输出格式:

一行,一个整数,表示每天两人在一起的时间(即最长公共路径的长度)

输入输出样例

输入样例#1:

9 10
1 6 7 8
1 2 1
2 5 2
2 3 3
3 4 2
3 9 5
4 5 3
4 6 4
4 7 2
5 8 1
7 9 1

输出样例#1:

3

说明

对于30%的数据,N ≤ 100;

对于60%的数据,N ≤ 1000;

对于100%的数据,N ≤ 1500,输入数据保证没有重边和自环。

注意数组大小

由于不知道具体从那个点出发,因此我们跑4遍spfa,然后在暴力枚举公共路径的起始节点,这样公共路径的长度我们可以暴力枚举出来,怎么判断共同是最短路径上的路径呢,我们dis数组记录一下,如果我们的最短路是有这个节点更新的,那么他一定在最短路上

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 2000
#define M 2100000
#define y1 zz
using namespace std;
queue<int>q;
bool vis[N];
int head[N],fa[N],dis[5][N];
int n,m,x1,x2,y1,y2,x,y,z,tot,ans,sum;
int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<‘0‘||ch>‘9‘) ch=getchar();
    while(ch>=‘0‘&&ch<=‘9‘) x=x*10+ch-‘0‘,ch=getchar();
    return x*f;
}
struct Edge
{
    int to,dis,next;
}edge[M<<1];
int add(int x,int y,int z)
{
    tot++;
    edge[tot].to=y;
    edge[tot].dis=z;
    edge[tot].next=head[x];
    head[x]=tot;
}
int spfa(int s,int p)
{
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++) dis[p][i]=0x3f3f3f3f;
    vis[s]=true,dis[p][s]=0,q.push(s);
    while(!q.empty())
    {
        int x=q.front(); q.pop();vis[x]=false;
        for(int i=head[x];i;i=edge[i].next)
        {
            int to=edge[i].to;
            if(dis[p][to]<=dis[p][x]+edge[i].dis) continue;
            dis[p][to]=dis[p][x]+edge[i].dis;
            if(vis[to]) continue;
            q.push(to),vis[to]=true;
        }
    }
}
int main()
{
    n=read(),m=read();
    x1=read(),y1=read(),x2=read(),y2=read();
    for(int i=1;i<=m;i++)
    {
        x=read(),y=read(),z=read();
        add(x,y,z),add(y,x,z);
    }
    spfa(x1,1);spfa(y1,2);spfa(x2,3);spfa(y2,4);
    for(int i=1;i<=n;i++)
      if(dis[1][i]+dis[2][i]==dis[1][y1])
       if(dis[3][i]+dis[4][i]==dis[3][y2])
        for(int j=i+1;j<=n;j++)
         if(dis[1][j]+dis[2][j]==dis[1][y1])
          if(dis[3][j]+dis[4][j]==dis[3][y2])
           ans=max(ans,abs(dis[1][i]-dis[1][j]));
    printf("%d",ans);
    return 0;
}
时间: 2024-10-13 13:54:44

洛谷——P2149 [SDOI2009]Elaxia的路线的相关文章

洛谷—— P2149 [SDOI2009]Elaxia的路线

https://www.luogu.org/problem/show?pid=2149 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长. 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间. 具体地说,就是要求无向图中,两对点间最短路的最长

P2149 [SDOI2009]Elaxia的路线

题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长. 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间. 具体地说,就是要求无向图中,两对点间最短路的最长公共路径. 输入输出格式 输入格式: 第一行:两个整数N和M(含义如题目描述). 第二行

P2149 [SDOI2009]Elaxia的路线[最长公共路径]

题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长. 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间. 具体地说,就是要求无向图中,两对点间最短路的最长公共路径. 解析 这个题,怎么说呢,对我来说思维难度还是比较低的,但是代码难度

luogu P2149 [SDOI2009]Elaxia的路线 |最短路+建最短路图+卡常数

题目描述 最近,Elaxia 和 w** 的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的时间. Elaxia 和 w** 每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长. 现在已知的是 Elaxia 和 w** 所在的宿舍和实验室的编号以及学校的地图: 地图上有 n 个路口,m 条路,经过每条路都需要一定的时间. 具体地说,就是要求无向图中,两对点间最短路的最长公共路径. 输入格式 第一行两个正整数 n,m,表示点

[SDOI2009]Elaxia的路线 SPFA+Topo

P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长. 现在已知的是Elaxia和w**所在的宿舍和实验室的编号以及学校的地图:地图上有N个路 口,M条路,经过每条路都需要一定的时间. 具体地说,就是要求无向图中,两对点间最短路的最长公共路径. 输入输出格式 输入格式:

[SDOI2009]Elaxia的路线

P2149 [SDOI2009]Elaxia的路线 求无向图中,两对点间最短路的最长公共路径 喵啊-这题真心喵啊-orzorz 先spfa求出x1, y1, x2, y2的单源最短路 然后把x1到y1的最短路们建图 判断方式(精髓!): if(dis[0][uu] + ww + dis[1][vv] == dis[0][y1]){ addedge(uu, vv, ww, 1); ind[vv]++; } 蒟蒻欲膜又止[划掉 注意 建完是有向图哦 在建完图之后 用同样的方式判断这个新图上有哪些边在

bzoj1880: [Sdoi2009]Elaxia的路线

1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 1035  Solved: 412[Submit][Status][Discuss] Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提下,一起走的时间尽可能的长. 现在已知的是E

BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )

找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 -------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #incl

洛谷P1027 Car的旅行路线

洛谷P1027 Car的旅行路线 题目描述 又到暑假了,住在城市A的Car想和朋友一起去城市B旅游.她知道每个城市都有四个飞机场,分别位于一个矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速铁路,第I个城市中高速铁路了的单位里程价格为Ti,任意两个不同城市的机场之间均有航线,所有航线单位里程的价格均为t. 图例(从上而下) 机场 高速铁路 飞机航线 注意:图中并没有 标出所有的铁路与航线. 那么Car应如何安排到城市B的路线才能尽可能的节省花费呢?她发现这并不是一个简单的问题,于是她来