全概率公式、贝叶斯公式(二)

(1)条件概率公式

设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:

P(A|B)=P(AB)/P(B)

(2)乘法公式

1.由条件概率公式得:

P(AB)=P(A|B)P(B)=P(B|A)P(A)

上式即为乘法公式;

2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有:

P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A1A2...An-1)

(3)全概率公式

1. 如果事件组B1,B2,.... 满足

1.B1,B2....两两互斥,即 B∩ B= ? ,i≠j , i,j=1,2,....,且P(Bi)>0,i=1,2,....;

2.B1∪B2∪....=Ω ,则称事件组 B1,B2,...是样本空间Ω的一个划分

设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:

上式即为全概率公式(formula of total probability)

2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(Bi),P(A|Bi)  (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...Bn,这样事件A就被事件AB1,AB2,...ABn分解成了n部分,即A=AB1+AB2+...+ABn, 每一Bi发生都可能导致A发生相应的概率是P(A|Bi),由加法公式得

P(A)=P(AB1)+P(AB2)+....+P(ABn)

=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(PBn)

3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。

解:设.....     P(A)=25%*5%+4%*35%+2%*40%=0.0345

(4)贝叶斯公式

1.与全概率公式解决的问题相反,贝叶斯公式是建立在条件概率的基础上寻找事件发生的原因(即大事件A已经发生的条件下,分割中的小事件Bi的概率),设B1,B2,...是样本空间Ω的一个划分,则对任一事件A(P(A)>0),有

上式即为贝叶斯公式(Bayes formula),B常被视为导致试验结果A发生的”原因“,P(Bi)(i=1,2,...)表示各种原因发生的可能性大小,故称先验概率;P(Bi|A)(i=1,2...)则反映当试验产生了结果A之后,再对各种原因概率的新认识,故称后验概率。

2.实例:发报台分别以概率0.6和0.4发出信号“∪”和“—”。由于通信系统受到干扰,当发出信号“∪”时,收报台分别以概率0.8和0.2受到信号“∪”和“—”;又当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“∪”。求当收报台收到信号“∪”时,发报台确系发出“∪”的概率。

解:设...., P(B1|A)= (0.6*0.8)/(0.6*0.8+0.4*0.1)=0.923

转自:

https://www.cnblogs.com/ohshit/p/5629581.html

原文地址:https://www.cnblogs.com/zzdbullet/p/10120778.html

时间: 2024-10-27 07:57:57

全概率公式、贝叶斯公式(二)的相关文章

伯努利大数定律|辛钦大数定律|全概率公式|贝叶斯公式|

---恢复内容开始--- 生物统计学 古典概型: 理论上,在未得到试验结果之前可以根据实验条件,预先估计出来的所有可能结果称为样本空间,即为集合Ω.样本点w是Ω的一个元素.这是概率的古典定义,即依据事件本身特性,直接得到概率.这里得到的往往是先验概率. 随机事件是一个集合,是样本空间的一个子集. 必然事件是一个集合,包含所有样本点. 不可能事件是一个集合,不包含所有样本点. Today: 与古典概率的定义不同,现在我们所知的是事物已经发生频率,而通过伯努利大数定律使得大样本的频率约等于概率,这里

从朴素贝叶斯分类器到贝叶斯网络(上)

一.贝叶斯公式(一些必备的数学基础) 贝叶斯(Thomas Bayes)是生活在十八世纪的一名英国牧师和数学家.因为历史久远,加之他没有太多的著述留存,今天的人们对贝叶斯的研究所知甚少.唯一知道的是,他提出了概率论中的贝叶斯公式.但从他曾经当选英国皇家科学学会会员(类似于院士)来看,他的研究工作在当时的英国学术界已然受到了普遍的认可. 事实上,在很长一段时间里,人们都没有注意到贝叶斯公式所潜藏的巨大价值.直到二十世纪人工智能.机器学习等崭新学术领域的出现,人们才从一堆早已蒙灰的数学公式中发现了贝

概率论与数理统计学习笔记

第一章 随机事件与概率 第二章 随机变量及其分布 第三章 多维随机变量及其分布 第四章 大数定律与中心极限定理 第五章 统计量及其分布 第六章 参数估计 第七章 假设检验 第八章 方差分析与回归分析 第一章 随机事件与概率 1.1随机事件及其运算 概率论与数理统计研究的对象是随机现象. 概率论是研究随机现象的模型(即概率分布),数理统计是研究随机现象的数据收集与处理. 随机现象: 在一定的条件下,并不总是出现相同结果的现象称为随机现象 样本空间:随机现象的一切可能基本结果组成的集合称为样本空间

深度学习的数学基础

深度学习的数学基础 微积分 无穷小在17世纪下半叶,数学史上出现了无穷小的概念,而后发展处极限的概念 极限 数列的极限 函数的极限 导数 微分 积分 不定积分也称为原函数或反导数 定积分 定积分中值定理 牛顿-莱布尼茨公式 偏导数 概率统计 样本空间定义:随机试验 E 的所有结果构成的集合称为 E 的 样本空间,记为 S={e}称 S 中的元素 e 为样本点,一个元素的单点集称为基本事件. 概率条件概率/后验概率P(A|B)边缘概率/先验概率A的边缘概率表示为P(A),B的边缘概率表示为P(B)

机器学习数学基础 - 概率论

随机事件和概率 基础概念 ?  随机试验 ?  样本点和样本空间 ?  随机事件 随机事件的概率 ?  例子 条件概率 ?  定义 ?  例子 事件的独立性 ?  定义 ?  例子 全概率公式和贝叶斯公式 全概率公式 贝叶斯公式 实例 随机变量, 期望和方差 随机变量 ?  定义 ?  例子 概率分布 ?  定义 ?  性质 概率密度函数 随机变量的期望 随机变量的方差 最大似然估计 原文地址:https://www.cnblogs.com/shijieli/p/11620323.html

条件概率、全概率公式与贝叶斯公式

  条件概率.全概率公式与贝叶斯公式(转载) 一.背景 一个随机事件的概率,确切地说,是指在某些给定的条件下,事件发生的可能性大小的度量.但如果给定的条件发生变化之后,该事件的概率一般也随之变化.于是,人们自然提出:如果增加某个条件之后,事件的概率会怎样变化的?它与原来的概率之间有什么关系?显然这类现象是常有的. [例1] 设有一群共人,其中个女性,个是色盲患者. 个色盲患者中女性占个. 如果={从中任选一个是色盲}, ={从中任选一个是女性},此时, .如果对选取规则附加条件:只在女性中任选一

全概率公式与贝叶斯公式(一)

一.条件概率公式 举个例子,比如让你背对着一个人,让你猜猜背后这个人是女孩的概率是多少? 直接猜测,肯定是只有50%的概率,假如现在告诉你背后这个人是个长头发,那么女的概率就变为90%. 所以条件概率的意义就是,当给定条件发生变化后,会导致事件发生的可能性发生变化. 条件概率由文氏图出发,比较容易理解: 表示B发生后A发生的概率,由上图可以看出B发生后,A再发生的概率就是,因此: 由: 得: 这就是条件概率公式. 假如事件A与B相互独立,那么: 注: 相互独立:表示两个事件发生互不影响.而互斥:

对全概率公式和贝叶斯公式的理解

对全概率公式和贝叶斯公式的理解 我该怎么来理解这2个公式呢?打个比方,假设学校的奖学金都采取申请制度,只有满足一定的条件你才能拿到这比奖学金.那么有哪些原因能够使你有可能拿到奖学金呢?1.三好学生,拿到奖学金的概率是p(A1)=0.3. 2.四好学生,拿到奖学金的概率是p(A2)=0.4.3.五好学生,拿到奖学金的概率是p(A3)=0.5.4.六好学生,拿到奖学金的概率是p(A4)=0.6.这些学生只能是三好四好五好六好学生种的一种,不能跨种类.这个学校学生是三好学生的概率是p(B1)=0.4,

全概率公式和贝叶斯公式

全概率公式: 贝叶斯公式: