tensorflow之神经网络实现流程总结

tensorflow之神经网络实现流程总结

  • 1.数据预处理preprocess
  • 2.前向传播的神经网络搭建(包括activation_function和层数)
  • 3.指数下降的learning_rate
  • 4.参数的指数滑动平均EMA
  • 5.防止过拟合的正则化regularization
  • 6.loss损失函数构造(loss_ + regularization)
  • 7.后向传播和梯度下降(learning_rate + loss)
  • 8.评价函数的构造(accuracy + EMA)
  • 9.run 模型(用variable 而不是 EMA)
  • 10.模型保存

原文地址:https://www.cnblogs.com/Anani-leaf/p/9697291.html

时间: 2024-10-06 14:37:08

tensorflow之神经网络实现流程总结的相关文章

tensorflow搭建神经网络基本流程

定义添加神经层的函数 1.训练的数据2.定义节点准备接收数据3.定义神经层:隐藏层和预测层4.定义 loss 表达式5.选择 optimizer 使 loss 达到最小 然后对所有变量进行初始化,通过 sess.run optimizer,迭代 1000 次进行学习: import tensorflow as tf import numpy as np # 添加层 def add_layer(inputs, in_size, out_size, activation_function=None)

(转)一文学会用 Tensorflow 搭建神经网络

一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day 6: 快速入门 Tensorflow 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相

使用 TensorFlow 实现神经网络

介绍 一直关注 数据科学 . 机器学习 的同学,一定会经常看到或听到关于 深度学习 和 神经网络 相关信息.如果你对 深度学习 感兴趣,但却还没有实际动手操作过,你可以从这里得到实践. 在本文中,我将介绍 TensorFlow ,?帮你了解 神经网络 的实际作用,并使用 TensorFlow 来解决现实生活中的问题.?读这篇文章前,需要知道 神经网络 的基础知识和一些熟悉编程理念,文章中的代码是使用 Pyhton 编写的,所以还需要了解一些 Python 的基本语法,才能更有利对于文章的理解.

Tensorflow 创建神经网络

一个神经网络系统,由很多层组成,输入层用来接收信息,中间层加工处理输入信息,输出层就是计算机对这个输入信息的认知. https://www.jianshu.com/p/e112012a4b2d 搭建神经网络基本流程 定义添加神经层的函数 1.训练的数据 2.定义节点准备接收数据 3.定义神经层:隐藏层和预测层 4.定义 loss 表达式 5.选择 optimizer 使 loss 达到最小 然后对所有变量进行初始化,通过 sess.run optimizer,迭代 1000 次进行学习: imp

用Tensorflow让神经网络自动创造音乐

前几天看到一个有意思的分享,大意是讲如何用Tensorflow教神经网络自动创造音乐.听起来好好玩有木有!作为一个Coldplay死忠粉,第一想法就是自动生成一个类似Coldplay曲风的音乐,于是,开始跟着Github上的教程(项目的名称:Project Magenta)一步一步做,弄了三天,最后的生成的音乐在这里(如果有人能告诉我怎么在博客里插入音乐请赶快联系我!谢谢!) 第一首:Magenta Melody Result1.mp3 http://yun.baidu.com/share/li

Tensorflow卷积神经网络[转]

Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵就有了中心点和半径的概念. 对图像中每个点取以其为中心的n阶方阵, 将该方阵与卷积核中

深度学习原理与框架-Tensorflow卷积神经网络-神经网络mnist分类

使用tensorflow构造神经网络用来进行mnist数据集的分类 相比与上一节讲到的逻辑回归,神经网络比逻辑回归多了隐藏层,同时在每一个线性变化后添加了relu作为激活函数, 神经网络使用的损失值为softmax概率损失值,即为交叉熵损失值 代码:使用的是mnist数据集作为分类的测试数据,数据的维度为50000*784 第一步:载入mnist数据集 第二步:超参数的设置,输入图片的大小,分类的类别数,迭代的次数,每一个batch的大小 第三步:使用tf.placeholder() 进行输入数

【零基础】使用Tensorflow实现神经网络

一.序言 前面已经逐步从单神经元慢慢“爬”到了神经网络并把常见的优化都逐个解析了,再往前走就是一些实际应用问题,所以在开始实际应用之前还得把“框架”翻出来,因为后面要做的工作需要我们将精力集中在业务而不是网络本身,所以使用框架可以减少非常多的工作量,有了前面自己实现神经网络的经验,现在理解框架的一些设置也比较容易了.本篇我们就使用比较常见的Tensorflow来重置一下前面的工作. 备注一下Tensorflow的安装: 1)安装python3.6,高版本不支持 2)pip install ten

AI相关 TensorFlow -卷积神经网络 踩坑日记之一

上次写完粗浅的BP算法 介绍 本来应该继续把 卷积神经网络算法写一下的 但是最近一直在踩 TensorFlow的坑.所以就先跳过算法介绍直接来应用场景,原谅我吧. TensorFlow 介绍 TF是google开源出来的人工智能库,由python语言写的 官网地址:http://www.tensorflow.org/   请用科学上网访问 中文地址:http://www.tensorfly.cn/ 当然还有其他AI库,不过大多数都是由python 写的 .net 的AI库叫 Accord.net