Wannafly挑战赛25 C 期望操作数 数学

题目

题意:给你你一个数x和一个数q,x<=q,每一次可以等概率把x变成[x,q]中任意一个数,问变成q的步数的期望,输出对998244353取模,多组询问

题解:首先肯定的是,可以预处理,因为只和x,q的差值有关

为了方便理解,我们先定义f[p]表示数p到q的期望,例如对于q=10,f[9]就表示x=9时,期望步数

那么就有    f[1] = 1/q * f[1]+1/q* f[2] +……+ 1/q * f[q-1]  + 1

f[2] = 1/(q-1) * f[2] + ……+1/(q-1) * f[q-1]+1

……

        f[q-1]=1/2 * f[q-1]+1  (例如样例7-8期望步数2)

所以就有

(q-1)/q       * f[1] = 1/q        * (f[2]+f[3]+……+f[q-1]+q)       (q-1)      * f[1] = (f[2]+f[3]+……+f[q-1]+q)

(q-2)/(q-1) * f[2]  = 1/(q-1) *  (f[3]+f[4]+f[q-1]+q-1)             (q-2)    *  f[2]  = (f[3]+f[4]+f[q-1]+q-1)

…… 

1/2* f[q-1] =1/2 * 2

因为多组询问,所以把这个数组倒着处理要方便一点

看了很多人代码,发现具体转移还可以很多种表示,可能是定义f的时候与不同,反正被秀到

 1 #include<bits/stdc++.h>
 2 #define mod 998244353ll
 3 #define ll long long
 4 #define N 10000010
 5 using namespace std;
 6 int T,l,r;
 7 ll t,f[N],inv[N];
 8 int main()
 9 {
10     scanf("%d",&T);
11     inv[1]=1;
12     for (int i=2;i<N;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
13     for (int i=1;i<N;i++)
14     {
15         f[i]=(t*inv[i]+(i+1)*inv[i])%mod;
16         t=(t+f[i])%mod;
17     }
18     while (T--)
19     {
20         scanf("%d%d",&l,&r);
21         printf("%lld\n",f[r-l]);
22     }
23 }

    

原文地址:https://www.cnblogs.com/qywhy/p/9733858.html

时间: 2024-11-10 22:20:55

Wannafly挑战赛25 C 期望操作数 数学的相关文章

Wannafly挑战赛25游记

Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\)并且\(p^{k+1}\not|x\)的因子. 思路: 枚举\(p\)的每一个质因数\(q\),求出它在\(n!\)出现次数\(/p\)中出现次数,取\(\min\)即可.对于一个质因数\(q\),在\(n!\)中出现的次数等于\(\sum_{i=1}^{\inf}\frac n{q^i}\).

Wannafly挑战赛25 因子 数论

一.题意 令 X = n!, 给定一大于1的正整数p 求一个k使得 p ^k | X 并且 p ^(k + 1) 不是X的因子 输入为两个数n, p (1e18>= n>= 10000 >= p >= 2) 二.分析 2.1前置知识:阶乘质因数分解 定理:在n!的标准分解式中,质因数p的指数h为 \[h = \left[ {\frac{n}{p}} \right] + \left[ {\frac{n}{{{p^2}}}} \right] + ... = \sum\limits_{r

牛客网 Wannafly挑战赛8 C-小C打比赛 (状压DP)

小C现在要参加一场wannafly挑战赛,一场挑战赛一共有n道题,一共有m分钟. 对于第i道题,小C解决它需要恰好j分钟的概率是pi,j. 小C每次会选择某一道没做完的题,然后把它解决(不能中途放弃),之后再决策下一道要做的题是哪道. 求小C在最优策略下,期望能做出几道题. 输入描述: 第一行两个正整数n,m接下来一共n行,每行有m个小数,第i行的第j个小数表示p i,j (这里假设不存在0分钟A题的dalao). 输出描述: 输出一个小数,表示期望能做出几道题,保留小数点后五位. 示例1 输入

Wannafly挑战赛18

Wannafly挑战赛18 A. 序列 先考虑暴力,相邻两个树之间乘上给定的三种数,递推出下一个位置填什么,然后再check一下,最后一位是否为1即可.这样时间显然不行,但是给我们一种思路,就是中间的转换关系,确定唯一一个序列.现在的目标是让最后一位出现1,可以如果不管1,由-2和0.5取凑出1需要两个-2和两个0.5.那所有的转换中,就只要保证有若干组(-2,-2,0.5,0.5)存在,其他地方为1即可.具体公式见代码 #include <bits/stdc++.h> #define rep

Wannafly挑战赛3

Wannafly挑战赛3 A    珂朵莉 B    遇见 水题 #include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define rep(i,a,b) for (int i=a; i<=b; ++i) #define per(i,b,a) for (int i=b; i>=a; --i) #define mes(a

【Wannafly挑战赛4】F 线路规划 倍增+Kruskal+归并

[Wannafly挑战赛4]F 线路规划 题目描述 Q国的监察院是一个神秘的组织.这个组织掌握了整个帝国的地下力量,监察着Q国的每一个人.监察院一共有N个成员,每一个成员都有且仅有1个直接上司,而他只听从其上直接司的命令.其中1号成员是监察院的院长,这个庞然大物的主人.由于时代的进步,监察院议会决定升级组织的旧式通信器,安装最新的反侦测通信器.他们拿出了M组线路方案,其中第i组线路方案可以用一个四元组(x[i].y[i].k[i].w[i])描述,表示第x[i]号成员可以安装与y[i]号成员的直

Wannafly挑战赛11 D 白兔的字符串 Hash

Wannafly挑战赛11 D   白兔的字符串 白兔有一个字符串T.白云有若干个字符串S1,S2..Sn. 白兔想知道,对于白云的每一个字符串,它有多少个子串是和T循环同构的. 提示:对于一个字符串a,每次把a的第一个字符移动到最后一个,如果操作若干次后能够得到字符串b,则a和b循环同构. 所有字符都是小写英文字母 输入描述: 第一行一个字符串T(|T|<=10^6)第二行一个正整数n (n<=1000)接下来n行为S1~Sn (|S1|+|S2|+…+|Sn|<=10^7),max(

Wannafly挑战赛19

Wannafly挑战赛19 A. 队列Q 需要支持把一个元素移到队首,把一个元素移到队尾,移到队首就直接放到队首前面那个位置,原位置标为0,队尾同理. #include <bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;++i) typedef long long ll; const int N = 30000200; using namespace std; int n,m; int q[N],hd,x,ed,P[N]; char

Wannafly挑战赛22游记

Wannafly挑战赛22游记 幸福的人都是相似的,不幸的人各有各的不幸. --题记 A-计数器 题目大意: 有一个计数器,计数器的初始值为\(0\),每次操作你可以把计数器的值加上\(a_1,a_2,\ldots,a_n\)中的任意一个整数,操作次数不限(可以为\(0\)次),问计数器的值对\(m\)取模后有几种可能. 思路: 由裴蜀定理易得,答案即为\(\frac m{\gcd(m,a_1,a_2,\ldots,a_n)}\). 源代码: #include<cstdio> #include