Union-Find 并查集算法

一、动态连通性(Dynamic Connectivity)

Union-Find 算法(中文称并查集算法)是解决动态连通性(Dynamic Conectivity)问题的一种算法。动态连通性是计算机图论中的一种数据结构,动态维护图结构中相连信息。简单的说就是,图中各个节点之间是否相连、如何将两个节点连接,连接后还剩多少个连通分量。有点像我们的微信朋友圈,在社交网络中,彼此熟悉的人之间组成自己的圈子,熟悉之后就会添加好友,加入新的圈子。微信用户有几亿人,如何快速计算任意两个用户是否同属于一个圈子呢?计算机是如何将两个用户连接起来的呢?整个微信用户共有几个独立的圈子呢?Union-Find就可以解决上述问题。

二、基本概念
结合下面图的例子来了解基本概念:

图中8个节点都是独立互不连通的,也就是一共有8个连通分量。

连通是一种等价关系,也就是说具有如下三个性质:

1、自反性:节点pp是连通的。

2、对称性:如果节点pq连通,那么qp也连通。

3、传递性:如果节点pq连通,qr连通,那么pr也连通。

如果将节点1和节点2进行连接,那连通分量就剩余7个,如下图:

如何在计算中实现这些操作呢?

class UF:
    def union(self,p,q): # initialize N sites with integer names
    def connected(self,p,q): #return true if p and q are in the same component
    def count(): #number of components

原文地址:https://www.cnblogs.com/gczr/p/12077934.html

时间: 2024-10-29 20:10:34

Union-Find 并查集算法的相关文章

【algorithms IV】带权重的并查集算法

问题 普通的Union-find并查集算法没有加入权重, 可以构造特别的输入使得每次合并的时候高的树HighTree以低的树LowTree的根[root(LowTree)]为新的根, 造成树的不平衡,从而使得效率下降. 用一个新的数组标记节点当前的高,可以用来在合并的时候减少时间. 当然了,这种方法的空间复杂度会提高一倍,看实际情况使用了. public class WeightedQuickUnionUF { private int[] id; // parent link (site ind

并查集算法详解

更好的阅读体验 并查集算法详解 算法详解 维护类型 身为一个数据结构,我们的并查集,它的维护对象是我们的关注点. 并查集适合维护具有非常强烈的传递性质,或者是连通集合性质. 性质详解 传递性质 传递性,也就是具有传递效应的性质,比如说A传递给B一个性质或者条件,让B同样拥有了这个性质或者条件,那么这就是我们所说的传递性. 连通集合性质 连通集合性,和数学概念上的集合定义是差不多的, 比如说A和B同属一个集合,B和C同属一个集合,那么A,B,C都属于同一个集合.这就是我们所谓的连通集合性质. 算法

HDU 1035 Robot Motion Union Find 并查集题解

本题的类型我一看就想到使用并查集解了,因为要查找是否有环,这是并查集的典型用法. 但是由于本题数据实在是太水了,故此有人使用直接模拟都过了.这让本题降了个档次. 这里使用并查集解.而且可以根据需要简化并查集函数,代码还是很好打的. #include <stdio.h> #include <vector> #include <string.h> #include <algorithm> #include <iostream> #include &l

POJ 2524 Ubiquitous Religions Union Find 并查集

本题是标准的并查集了,最后利用这些集求有多少独立集. 所以这里也写个标准程序过了. 最后查找独立集合: 看有多少个节点的父母节点是自己的,那么就是独立集合了.自己做自己的父母当然最独立的了,没有任何依赖,呵呵. #include <stdio.h> const int MAX_N = 50001; //const int MAX_M = MAX_N/2 * (MAX_N-1) + 1; int N, M; struct SubSet { int p, r; }; SubSet sub[MAX_

快速搞定并查集算法

目录 算法介绍 wiki 通俗解释 算法实现(C语言) 算法实战 算法介绍 wiki 并查集 通俗解释 零基础学并查集算法 算法实现(C语言) Find函数(未采用路径压缩) int Find(int x) { int r = x; while(pre[r] != r) { r = pre[r]; } return r; } Find函数(路径压缩递归实现) int Find(int x) { if(pre[x] == x) return x; else { pre[x] = Find(pre[

零基础学并查集算法

并查集是我暑假从高手那里学到的一招,觉得真是太精妙的设计了.以前我无法解决的一类问题竟然可以用如此简单高效的方法搞定.不分享出来真是对不起party了.(party:我靠,关我嘛事啊?我跟你很熟么?) 来看一个实例,杭电1232畅通工程 首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的.最后要解决的是整幅图的连通性问题.比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块.像畅通工程这题,问还需要修

hdu 1232 畅通工程(并查集算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232 畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 31088    Accepted Submission(s): 16354 Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条

并查集算法的描述

1.概念: 在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受:即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1-3秒)内计算出试题需要的结果,只能用并查集来描述. 2.定义: 并查集是一种树型的数

【转】并查集算法和路径压缩

并查集是我暑假从高手那里学到的一招,觉得真是太精妙的设计了.以前我无法解决的一类问题竟然可以用如此简单高效的方法搞定.不分享出来真是对不起party了.(party:我靠,关我嘛事啊?我跟你很熟么?) 来看一个实例,杭电1232畅通工程 首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的.最后要解决的是整幅图的连通性问题.比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块.像畅通工程这题,问还需要修