吴裕雄--天生自然python机器学习:朴素贝叶斯算法

分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同
时给出这个猜测的概率估计值。

概率论是许多机器学习算法的基础

在计算
特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值
的次数,然后除以数据集的实例总数,就得到了特征取该值的概率。

首先从一个最简单的概率分类器开始,然后给
出一些假设来学习朴素贝叶斯分类器。我们称之为“朴素”,是因为整个形式化过程只做最原始、
最简单的假设。

基于贝叶斯决策理论的分类方法

朴素贝叶斯是贝叶斯决策理论的一部分,所以讲述朴素负叶斯之前有必要快速了解一下贝叶
斯决策理论。

假设现在我们有一个数据集,它由两类数据组成

import matplotlib
import matplotlib.pyplot as plt

from numpy import *

n = 1000 #number of points to create
xcord0 = []
ycord0 = []
xcord1 = []
ycord1 = []
markers =[]
colors =[]
fw = open(‘E:\\testSet.txt‘,‘w‘)
for i in range(n):
    [r0,r1] = random.standard_normal(2)
    myClass = random.uniform(0,1)
    if (myClass <= 0.5):
        fFlyer = r0 + 9.0
        tats = 1.0*r1 + fFlyer - 9.0
        xcord0.append(fFlyer)
        ycord0.append(tats)
    else:
        fFlyer = r0 + 2.0
        tats = r1+fFlyer - 2.0
        xcord1.append(fFlyer)
        ycord1.append(tats)
    #fw.write("%f\t%f\t%d\n" % (fFlyer, tats, classLabel))

fw.close()
fig = plt.figure()
ax = fig.add_subplot(111)
#ax.scatter(xcord,ycord, c=colors, s=markers)
ax.scatter(xcord0,ycord0, marker=‘^‘, s=90)
ax.scatter(xcord1,ycord1, marker=‘o‘, s=50, c=‘red‘)
plt.plot([0,1], label=‘going up‘)
plt.show()

也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有
最高概率的决策。

条件概率

使用条件概率来分类

使用朴素贝叶斯进行文档分类

机器学习的一个重要应用就是文档的自动分类。在文档分类中,整 个 文 档 (如一封电子邮件)
是实例,而电子邮件中的某些元素则构成特征。虽然电子邮件是一种会不断增加的文本,但我们同
样也可以对新闻报道、用户留言、政府公文等其他任意类型的文本进行分类。我们可以观察文档中
出现的词,并把每个词的出现或者不出现作为一个特征,这样得到的特征数目就会跟词汇表中的词
目一样多。

使用Python进行文本分类

准备数据:从文本中构建词向量

将把文本看成单词向量或者词条向量,也就是说将句子转换为向量。考虑出现在所有文
档中的所有单词,再决定将哪些词纳人词汇表或者说所要的词汇集合,然后必须要将每一篇文档
转换为词汇表上的向量。

from numpy import *

def loadDataSet():
    postingList=[[‘my‘, ‘dog‘, ‘has‘, ‘flea‘, ‘problems‘, ‘help‘, ‘please‘],
                 [‘maybe‘, ‘not‘, ‘take‘, ‘him‘, ‘to‘, ‘dog‘, ‘park‘, ‘stupid‘],
                 [‘my‘, ‘dalmation‘, ‘is‘, ‘so‘, ‘cute‘, ‘I‘, ‘love‘, ‘him‘],
                 [‘stop‘, ‘posting‘, ‘stupid‘, ‘worthless‘, ‘garbage‘],
                 [‘mr‘, ‘licks‘, ‘ate‘, ‘my‘, ‘steak‘, ‘how‘, ‘to‘, ‘stop‘, ‘him‘],
                 [‘quit‘, ‘buying‘, ‘worthless‘, ‘dog‘, ‘food‘, ‘stupid‘]]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,classVec

def createVocabList(dataSet):
    vocabSet = set([])  #create empty set
    for document in dataSet:
        vocabSet = vocabSet | set(document) #union of the two sets
    return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else:
            print("the word: %s is not in my Vocabulary!" % word)
    return returnVec

postingList,classVec = loadDataSet()
VocabList = createVocabList(postingList)
print(VocabList)

returnVec = setOfWords2Vec(VocabList,postingList[0])
print(returnVec)

训练算法:从词向量计算概率

朴素贝叶斯分类器训练函数

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords)
    p1Num = ones(numWords)      #change to ones()
    p0Denom = 2.0
    p1Denom = 2.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)          #change to log()
    p0Vect = log(p0Num/p0Denom)          #change to log()
    return p0Vect,p1Vect,pAbusive
import matplotlib
import matplotlib.pyplot as plt

from numpy import *

t = arange(0.0, 0.5, 0.01)
s = sin(2*pi*t)
logS = log(s)

fig = plt.figure()
ax = fig.add_subplot(211)
ax.plot(t,s)
ax.set_ylabel(‘f(x)‘)
ax.set_xlabel(‘x‘)

ax = fig.add_subplot(212)
ax.plot(t,logS)
ax.set_ylabel(‘ln(f(x))‘)
ax.set_xlabel(‘x‘)
plt.show()

贝叶斯分类函数

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else:
        return 0

这里的相乘是指对应元素
相乘,即先将两个向量中的第1个元素相乘,然后将第2个元素相乘,以此类推。接下来将词汇表
中所有词的对应值相加,然后将该值加到类别的对数概率上。最后,比较类别的概率返回大概率
对应的类别标签。

def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry = [‘love‘, ‘my‘, ‘dalmation‘]
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry,‘classified as: ‘,classifyNB(thisDoc,p0V,p1V,pAb))
    testEntry = [‘stupid‘, ‘garbage‘]
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print(testEntry,‘classified as: ‘,classifyNB(thisDoc,p0V,p1V,pAb))

testingNB()

准备数据:文档词袋模型

朴素贝叶斯词袋模型

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else:
        return 0

原文地址:https://www.cnblogs.com/tszr/p/12041639.html

时间: 2024-10-01 11:32:31

吴裕雄--天生自然python机器学习:朴素贝叶斯算法的相关文章

吴裕雄--天生自然python机器学习:使用朴素贝叶斯过滤垃圾邮件

使用朴素贝叶斯解决一些现实生活中 的问题时,需要先从文本内容得到字符串列表,然后生成词向量. 准备数据:切分文本 测试算法:使用朴素贝叶斯进行交叉验证 文件解析及完整的垃圾邮件测试函数 def createVocabList(dataSet): vocabSet = set([]) #create empty set for document in dataSet: vocabSet = vocabSet | set(document) #union of the two sets return

吴裕雄--天生自然python机器学习:决策树算法

我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据的内 在含义,决策树的主要优势就在于数据形式非常容易理解. 决策树很多任务都 是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列 规则,机器学习算法最终将使用这些机器从数据集中创造的规则.专家系统中经常使用决策树,

吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果

在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主要包含以下3种特征: 每年获得的飞行常客里程数 玩视频游戏所耗时间百分比 每周消费的冰淇淋公升数 将文本记录到转换NumPy的解析程序 import operator from numpy import * from os import listdir def file2matrix(filenam

吴裕雄--天生自然python机器学习:支持向量机SVM

基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 = [] xcord1 = [] ycord1 = [] markers =[] colors =[] fr = open('F:\\machinelearninginaction\\Ch06\\testSet.txt')#this file was generated by 2normalGen.

通俗易懂机器学习——朴素贝叶斯算法

本文将叙述朴素贝叶斯算法的来龙去脉,从数学推导到计算演练到编程实战 文章内容有借鉴网络资料.李航<统计学习方法>.吴军<数学之美>加以整理及补充 基础知识补充: 1.贝叶斯理论–吴军数学之美 http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 2.条件概率 3.联合分布 朴素贝叶斯算法 朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的 分类方法.给定训练数据集,首先基于特征条件独立假设学习 输入/输出的联合概率分布

机器学习--朴素贝叶斯算法原理、方法及代码实现

一.朴素的贝叶斯算法原理 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据,朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种,朴素的意思是条件概率独立性. 条件概率的三个重要公式: (1)概率乘法公式: P(AB)= P(B) P(A|B) = P(A) P(B|A) =P(BA) (2)全概率公式:        (3)贝叶斯公式:            如果一个事物在一些属性条件发生的情况下,事物属于A的概率>属于B的概率,则判定事物属于A,这就是朴素贝叶斯的基本思想. 二.算法步骤 (

机器学习--朴素贝叶斯算法案例

电子邮件垃圾过滤 1.如何从文本文档中构建自己的词列表.使用正则表达式切分句子,并将字符串全部转换为小写. #################################### # 功能:切分文本 # 输入变量:大字符串 big_string # 输出变量:字符串列表 #################################### def text_parse(big_string): list_of_tokens = re.split(r'\W*', big_string) re

吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)

# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np

吴裕雄--天生自然python编程:turtle模块绘图(3)

turtle(海龟)是Python重要的标准库之一,它能够进行基本的图形绘制.turtle图形绘制的概念诞生于1969年,成功应用于LOGO编程语言. turtle库绘制图形有一个基本框架:一个小海龟在坐标系中爬行,其爬行轨迹形成了绘制图形.刚开始绘制时,小海龟位于画布正中央,此处坐标为(0,0),前进方向为水平右方. Python——turtle库 turtle库包含100多个功能函数,主要包括窗体函数.画笔状态函数和画笔运动函数3类. 画笔运动函数 turtle通过一组函数控制画笔的行进动作