基于Shard-Jdbc分库分表模式下,数据库扩容方案

本文源码:GitHub·点这里 || GitEE·点这里

一、数据库扩容

1、业务场景

互联网项目中有很多“数据量大,业务复杂度高,需要分库分表”的业务场景。

这样分层的架构
(1)上层是业务层biz,实现业务逻辑封装;
(2)中间是服务层service,封装数据访问;
(3)下层是数据层db,存储业务数据;

2、扩容场景和问题

当数据量持续新增,面临着这样一些需求,两台数据库无法容纳,需要数据库扩容,这里选择2台—扩容到3台的模式,如下图:

这样扩容的问题
(1)分库分表的策略导致数据迁移量大;
(2)影响数据的持续服务性;
(3)指定时间完成,技术压力大,容易导致预想不到的错误;

如何平稳不停机迁移数据,保证系统持续服务,是本文将要讨论的问题。

二、扩容解决方案

1、扩容方案图解

(1)分库分表基于MySQL数据库,使用shard-jdbc中间件
(2)该方案的思路整体基于SpringCloud微服务架构

2、解决扩容问题

(1)扩容情况下不需要暂停服务;
(2)数据迁移的压力小,不需要指定时间;

3、数据访问层逻辑

方案描述
基于两台数据库分库分表,简称:服务二
基于三台数据库分库分表,简称:服务三
(1)提供两套服务,服务二和服务三
(2)数据库扩容后,如果访问服务三直接获取到数据,流程结束。
(3)如果访问服务三获取不到数据,则访问服务二获取数据。
(4)在迁移开始的一段时间内,访问压力还会在服务二上面。
(5)这样就做到数据访问服务不会停机。
(6)这种访问模式基于SpringCloud很容易做到。

4、数据迁移层逻辑

方案描述
(1)关闭基于两台库的数据入库流程
(2)开启基于三台库的数据入库流程,这样新入库数据就可以被服务三直接访问到。
(3)开发数据迁移中间件,扫描原先两台库的数据。
(4)扫描的数据根据分三台库策略判断是否需要迁移。
(5)如果数据需要迁移,则调用服务三的数据入库接口。
(6)数据迁移完成后,删除原来的位置的数据。
(7)这种迁移模式基于SpringCloud很容易做到。

5、该方案迁移的优点

(1)整个过程是持续对线上提供服务;
(2)数据迁移中间件的开发复杂度较低;
(3)可以限速慢慢迁移,没有时间压力;

三、源代码管理

GitHub·地址
https://github.com/cicadasmile/spring-cloud-base
GitEE·地址
https://gitee.com/cicadasmile/spring-cloud-base

原文地址:https://blog.51cto.com/14439672/2443885

时间: 2024-10-10 00:48:45

基于Shard-Jdbc分库分表模式下,数据库扩容方案的相关文章

SpringCloud实现ShardJdbc分库分表模式下,数据库扩容方案

本文源码:GitHub·点这里 || GitEE·点这里 一.项目结构 1.工程结构 2.模块命名 shard-common-entity: 公共代码块 shard-open-inte: 开放接口管理 shard-eureka-7001: 注册中心 shard-two-provider-8001: 8001 基于两台库的服务 shard-three-provider-8002:8002 基于三台库的服务 3.代码依赖结构 4.项目启动顺序 (1)shard-eureka-7001: 注册中心 (

分库分表 or NewSQL数据库?终于看懂应该怎么选!【转】

最近与同行科技交流,经常被问到分库分表与分布式数据库如何选择,网上也有很多关于中间件+传统关系数据库(分库分表)与NewSQL分布式数据库的文章,但有些观点与判断是我觉得是偏激的,脱离环境去评价方案好坏其实有失公允.本文通过对两种模式关键特性实现原理对比,希望可以尽可能客观.中立的阐明各自真实的优缺点以及适用场景. 一.NewSQL数据库先进在哪儿? 首先关于“中间件+关系数据库分库分表”算不算NewSQL分布式数据库问题,国外有篇论文pavlo-newsql-sigmodrec,如果根据该文中

【转】MySQL分库分表环境下全局ID生成方案

转载一篇博客,里面有很多的知识和思想值得我们去思考. —————————————————————————————————————————————————————————————————————— 在大型互联网应用中,随着用户数的增加,为了提高应用的性能,我们经常需要对数据库进行分库分表操作.在单表时代,我们可以完全依赖于数据库的自增ID来唯一标识一个用户或数据对象.但是当我们对数据库进行了分库分表后,就不能依赖于每个表的自增ID来全局唯一标识这些数据了.因此,我们需要提供一个全局唯一的ID号生成

170123、数据库分库分表策略的具体实现方案

相关文章: 1. 使用Spring AOP实现MySQL数据库读写分离案例分析 2.MySQL5.6 数据库主从(Master/Slave)同步安装与配置详解 :http://blog.csdn.net/xlgen157387/article/details/51331244 3.MySQL主从复制的常见拓扑.原理分析以及如何提高主从复制的效率总结 :http://blog.csdn.net/xlgen157387/article/details/52451613 4.使用mysqlreplic

数据库分库分表策略的具体实现方案

一.MySQL扩展具体的实现方式 随着业务规模的不断扩大,需要选择合适的方案去应对数据规模的增长,以应对逐渐增长的访问压力和数据量. 关于数据库的扩展主要包括:业务拆分.主从复制,数据库分库与分表.这篇文章主要讲述数据库分库与分表 (1)业务拆分 业务起步初始,为了加快应用上线和快速迭代,很多应用都采用集中式的架构.随着业务系统的扩大,系统变得越来越复杂,越来越难以维护,开发效率变得越来越低,并且对资源的消耗也变得越来越大,通过硬件提高系统性能的方式带来的成本也越来越高. 因此,在选型初期,一个

MySQL分库分表之MyCat实现(五)

一 .分库分表 什么是分库分表? 分库分表就是为了解决由于数据量过大而导致数据库性能降低的问题,将原来独立的数据库拆分成若干数据库组成,将数据大表分成若干数据表组成,使得单一数据库.单一数据表的数据量变小,从而达到提升数据库性能的目的. 2.分库分表的方式 2.1分库: 1.垂直分库:是指按照业务将表进行分类,分布到不同的数据库上面,每个库可以放不同的服务器上,它的核心理念是专库专用. 2水平分库:把同一个表的数据按一定规则拆分到不同的数据库中,每个库可以放不同的服务器上 2.2分表: 1.垂直

数据库分库分表

1. 数据库分库分表 1.1. 前言 1.1.1. 名词解释 1.2. 数据库架构演变 1.3. 分库分表前的问题 1.3.1. 用户请求量太大 1.3.2. 单库太大 1.3.3. 单表太大 1.4. 分库分表的方式方法 1.4.1. 垂直拆分 1.4.2. 水平拆分 1.5. 分库分表后面临的问题 1.5.1. 事务支持 1.5.2. 多库结果集合并(group by,order by) 1.5.3. 跨库join 1.6. 分库分表方案产品 1.7. 为什么不建议分库分表 1.8. 参考

MySQL 分库分表方案,总结的非常好!

前言 公司最近在搞服务分离,数据切分方面的东西,因为单张包裹表的数据量实在是太大,并且还在以每天60W的量增长. 之前了解过数据库的分库分表,读过几篇博文,但就只知道个模糊概念, 而且现在回想起来什么都是模模糊糊的. 今天看了一下午的数据库分库分表,看了很多文章,现在做个总结,"摘抄"下来.(但更期待后期的实操) 会从以下几个方面说起: 第一部分:实际网站发展过程中面临的问题. 第二部分:有哪几种切分方式,垂直和水平的区别和适用面. 第三部分:目前市面有的一些开源产品,技术,它们的优缺

浅谈-分库分表方案

名词解释 库:database:表:table:分库分表:sharding 数据库架构演变 刚开始我们只用单机数据库就够了,随后面对越来越多的请求,我们将数据库的写操作和读操作进行分离, 使用多个从库副本(Slaver Replication)负责读,使用主库(Master)负责写, 从库从主库同步更新数据,保持数据一致.架构上就是数据库主从同步. 从库可以水平扩展,所以更多的读请求不成问题. 但是当用户量级上来后,写请求越来越多,该怎么办?加一个Master是不能解决问题的, 因为数据要保存一