题解:2018级算法第四次上机 C4-最小乘法

题目描述:

样例:

实现解释:

和字符串处理结合的动态规划,个人认为比较难分析出状态转移方程,虽然懂了之后挺好理解的

知识点:

动态规划,字符串转数字

题目分析:

首先按照最基础:依据题意设计原始dp数组,这里根据描可知有三个数需要考虑:数字串开始,数字串结尾和之间插入的乘号数量,因此基础dp[i][j][k],分别为开始,结束脚标和乘号数。

然后推导:考虑到添加乘号,为了使状态转移方程简单,最后固定位置,因此可以考虑每次都在最后插入乘号,插入乘号的位置便可倒序确定。此时数字串的开始位置便可固定为0(因为添加乘号都在最后添加,因此可以不必考虑开始),则有dp[i][j],分别为结束脚标和乘号数量。

得出状态转移方程:乘号在最后插入,插入之间有j-1个乘号,前面有i+1个数字,因此插入乘号的位置可从j+1一直到i-1脚标的数字后(保证能放下j个乘号),则需要比较的就是dp[i][j]和dp[i-k][j-1]*getNum(i-k+1,i);k为插入乘号后最后一个数字的位数(根据脚标范围而定),前者即插入乘号前面的最大值,后者即乘号后面的值,循环找最大既是dp[i][j]的最大值。

注:初始化需要对插入0个乘号时dp[i][0]进行特殊处理,其他均为0

难点:

状态转移方程的实现,状态转移时数字字符串脚标的确定

完整代码:

#include<iostream>
#include<cstring>
#include<sstream>
using namespace std;
long long dp[20][15];
string num;
long long getNum(int i,int j)
{
    string temp = num.substr(i,j-i+1);
    //基于开始脚标和长度截取字符串
    stringstream ss;
    long long strnum;//由于最大18位,因此可以直接转化
    ss << temp;//传入流
    ss >> strnum;//流导出自动转化数字
    return strnum;
}
int main()
{
    ios::sync_with_stdio(false);
    int n,length,minc,maxl;
    long long now;
    while(cin >> n)
    {
        cin >> num;
        length = num.length();
        memset(dp,0,sizeof(dp));
        //0个乘号时赋初值,这里用dp[i-1][0]*10+num[i]-‘0‘的方法更快些
        for(int i = 0;i<length;i++) dp[i][0] = getNum(0,i);
        //0的已经处理,从1开始
        for(int i = 1;i<length;i++)//当前到达的字符串脚标为i
        {
            minc = min(n,i);//最多可放的乘号数
            for(int j = 1;j<=minc;j++)//0~i中插入j个乘号
            {
                maxl = i-j+1;//插入的极限位置界定,依据i>=k+j-1得出
                for(int k = 1;k<=maxl;k++)//k为插入称号后最后一个数字的位数
                {
                    //乘号的插入位置为即i-k脚标的数字后
                    //因此获取数字时i-k+1即最后数字的开始脚标
                    now = dp[i-k][j-1]*getNum(i-k+1,i);//加快计算
                    if(now > dp[i][j])
                    {
                        dp[i][j] = now;
                    }
                }
            }
        }
        cout << dp[num.length()-1][n] << ‘\n‘;
    }
    return 0;
}

原文地址:https://www.cnblogs.com/doUlikewyx/p/11823895.html

时间: 2024-11-05 04:35:19

题解:2018级算法第四次上机 C4-最小乘法的相关文章

题解:2018级算法第四次上机 C4-商人卖鱼

题目描述: 样例: 实现解释: 需要简单分析的贪心题 知识点: 贪心,自定义排序,提前存储 题目分析: 卖鱼,鱼卖出去需要时间,鱼没被卖出去之前需要吃饲料 则有,如果卖a鱼的话b鱼会吃饲料c份,而卖b鱼a鱼会吃d份,为了消耗更少的饲料,如果c比d小,则应该卖a鱼.而计算上即c = a.t*b.d,d = a.d*b.t. 因此需要做的就是依据上述公式对所有鱼的买卖优先级进行排序(排序的cmp函数实现有进行简单解释),然后按顺序计算需要的饲料数即可. 为了不再遍历计算卖鱼时的花费,这里用total

题解:2018级算法第三次上机 C3-Zexal的浩瀚星辰

题目描述: 样例: 实现解释: 一道结合了火箭发射的贪心题目 知识点: 贪心,优先队列 题目分析: 根据题目描述可知,延迟后时间是正常推进的,也就是假设共有n个火箭,推迟k小时.则在到达k+1小时时,每过一个小时只要火箭没发射完都会有k(如果k大于n就是有剩余数量)个火箭会遭受延迟的损失,显然这是必然的(因为到达k小时前的损失都已经确定了,无法改变). 那么依据题意只要使得每次这k个火箭的损失最小即可,而如何最小:让其中单位时间损失最大的火箭发射即可,这样一定比发射其他火箭的损失要小. 于是便可

2016级算法第四次上机-B ModricWang的序列问题

1019 ModricWang的序列问题 思路 此题题意非常清晰,给定一个序列,求出最长上升子序列的长度.从数据规模来看,需要\(O(nlogn)\) 的算法. \(O(nlongn)\) 求最长上升子序列的做法如下: 维护一个数组\(f[]\) ,其中\(f[i]\) 表示当前步骤下长度为i的上升子序列的末尾元素的最小值. 需要注意的是,\(f[i]\) 一定是单调递增的,这个结论十分显然,这里就不做证明了. 使用动态规划思想,对于原序列中的每个元素,都拿去更新一次\(f[]\) .假设当前元

2016级算法第四次上机-E.Bamboo and the Ancient Spell

Bamboo and the Ancient Spell 分析 可能英文读题难度比较大,但是只要看到全大写的 "THE LONGEST COMMON SUBSEQUENCE !"应该就清楚这是考什么的了. 最长公共子序列:可以不连续.序列长度很大时,暴力方法非常费时,这也是一道比较经典的<算法导论>上的动态规划题. 设序列X=和Y=的一个最长公共子序列Z=,则: 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列: 若xm≠yn且zk≠xm ,则

2016级算法第四次上机-G.ModricWang的序列问题 II

1021 ModricWang的序列问题II 思路 此题与上一题区别不是很大,只是增加了一个长度限制,当场通过的人数就少了很多. 大体解题过程与上一题相同.区别在于对\(f[]\) 的操作.没有长度限制的时候,\(f[]\) 的更新策略是立即更新.假设间隔为\(T\),现在由于需要考虑间隔,那么在处理第\(i\) 个元素的时候,就需要看到 前\(i -T\) 个元素生成的\(f[]\) ,而不能受到第\(i-T+1\) 到 \(i-1\) 个元素的干扰.因此,考虑如下操作:每次准备更新\(f[]

贪心算法?我全都要!——算法第四章上机实践报告

算法第四章上机实践报告 一.        实践题目 4-1 程序存储问题 (90 分) 设有n 个程序{1,2,…, n }要存放在长度为L的磁带上.程序i存放在磁带上的长度是 li,1≤i≤n. 程序存储问题要求确定这n 个程序在磁带上的一个存储方案, 使得能够在磁带上存储尽可能多的程序. 对于给定的n个程序存放在磁带上的长度,计算磁带上最多可以存储的程序数. 输入格式: 第一行是2 个正整数,分别表示文件个数n和磁带的长度L.接下来的1行中,有n个正整数,表示程序存放在磁带上的长度. 输出

题解:2018级算法第二次上机 Zexal的流水线问题

题目描述: 样例: 实现解释: 最基础的流水线调度问题,甚至没有开始和结束的值 知识点:动态规划,流水线调度 实现方法即得出状态转移方程后完善即可,设a[][i]存储着第一二条线上各家的时间花费,t[][i]存储着i处进行线路切换的花费,f[][i]存储着各线在i处的最小花费. 则对每一个f[][i]应有如下的转移方程: f[0][1] = a[0][1]; f[1][1] = a[1][1]; f[0][i] = min(f[0][i-1]+a[0][i],f[1][i-1]+t[1][i-1

题解:2018级算法第二次上机 Zexal的钢管切割

题目描述: 样例: 实现解释: 经典钢管切割问题的变形:最赔钱切割 知识点:动态规划,钢管切割 实现方法即得出状态转移方程后完善为代码即可,先设数组price[i]存储着i长度钢管切割后的最小值,p[i]存储着i长度钢管不切割的值,price数组既是本问题的dp数组. 经过分析可知状态转移方程为: price[0] = 0; price[i] = min(p[1]+price[i-1],p[2]+price[i-2],...p[i-1]+price[1],p[i]); 因为price[i]已经是

题解:2018级算法第二次上机 Zexal的排座位

题目描述: 样例: 实现解释: 一道看似复杂但实际既是斐波那契变形的题目 知识点:递推,斐波那契 通过问题的描述,可以得到以下规律:(除了座位数为一时)男生坐最后时,倒数第二个一定是女生:女生坐最后,倒数第二个均可.转化:i个位置时男生结尾的情况数等于i-1个位置时女生结尾的情况数,i个位置时女生结尾的情况数等于i-1个位置时的总情况数. 于是便可得出两种解决方案:斐波那契变形和直接循环递推 斐波那契变形: i位置男生结尾的情况 = i-1位置女生结尾情况数 = i-2位置总情况数 i位置女生结