背包DP专题

P1510 精卫填海

很容易看出这是个01背包,可是怎么转化模型呢?注意到,输出impossible的情况就是当体力值C不可以处理体积为V的石头的时候,很自然的想到:把体力值看作背包的体积,把石头的体积看作背包的权值。求最大剩余体力值->在背包体积尽可能小的情况下,背包的权值>=石头的体积V

    rd(V),rd(n),rd(C);
    rep(i,1,n){
        rd(w[i]),rd(v[i]);
    }
    rep(i,1,n)
        dwn(j,C,v[i])
            f[j]=max(f[j],f[j-v[i]]+w[i]);
    rep(i,1,C){
        if(f[i]>=V){
            printf("%d\n",C-i);
            exit(0);
        }
    }
    printf("Impossible\n");
  • 二维费用背包
    rd(n),rd(M),rd(T);
    rep(i,1,n)rd(m[i]),rd(t[i]);
    rep(i,1,n)
        dwn(j,T,t[i])
            dwn(k,M,m[i])
                f[j][k]=max(f[j][k],f[j-t[i]][k-m[i]]+1);
    printf("%d",f[M][T]);

原文地址:https://www.cnblogs.com/sjsjsj-minus-Si/p/11634666.html

时间: 2024-11-05 20:40:15

背包DP专题的相关文章

多重背包(dp专题)

题目大意:输入n,代表有n种数,接下来n个数代表n种数,再接下来n个数代表每种数有多少个,在输入K,代表用这些数要加成的和 问你是否能加为K,能输出yes,不能输出no 这是一个典型的多重背包问题,可以用dp来求解,.但是如何定义递推关系会影响到最终的复杂度,首先我们先看一下如下定义: dp[i+1][j]:=用前i种数能否加成和为j 为了用前i种数加成j,也就需要能用前i-1种数字加成j,j-a[i],···,j-mi*a[i],中的某一种,由此我们可以定义如下递推关系 dp[i+1][j]=

背包DP HDOJ 5410 CRB and His Birthday

题目传送门 题意:有n个商店,有m金钱,一个商店买x件商品需要x*w[i]的金钱,得到a[i] * x + b[i]件商品(x > 0),问最多能买到多少件商品 01背包+完全背包:首先x == 1时,得到a[i] + b[i],若再买得到的是a[i],那么x == 1的情况用01背包思想,x > 1时就是在01的基础上的完全背包.背包dp没刷过专题,这么简单的题也做不出来:( /************************************************* Author

DP专题

DP专题 1. 背包模型 2. 子序列模型 3. 递推DP 4. 区间DP 5. 树形DP 6. 状压DP 学习资料:位操作基础篇之位操作全面总结 如何快速取得一个二进制状态的所有子状态 7. 概率DP 学习资料:简说期望类问题的解法 等等.......

[BZOJ 1025] 游戏 置换群 背包DP

题意 对于一个 $n$ 阶置换群 $A$ , 它的循环节大小分别为 $a_1, a_2, ..., a_m$ , 则有 $\sum_{i = 1} ^ m a_i = n$ . 定义 $f(A)$ 为它的所有循环节的最小公倍数, 即 $f(A) = [a_1, a_2, ..., a_m]$ . 求在所有 $n$ 阶置换群中, $f(A)$ 有多少种取值. $n \le 1000$ . 分析 判断 $K$ 可不可取. $K = \prod_{i = 1} ^ r {s_r} ^ {t_r}$ 可

hdu 5234 Happy birthday 背包 dp

Happy birthday Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5234 Description 今天是Gorwin的生日.所以她的妈妈要实现她的一个愿望.Gorwin说她想吃很多蛋糕.所以他妈妈带她来到了蛋糕园. 这个园子被分成了n*m个方格子.在每一个格子里面,有一个蛋糕.第i行,第j列的格子中有一个重量为wij千克的蛋糕,Gorwin从左上角(1,1

hdu 1171 Big Event in HDU(背包DP)

题意: 杭电搬迁,有N种设备,每种设备有个价值V,数量M,要求将这些设备平分,使得平分后两边的总价值尽可能地相等. 输出两边各自的总价值. 思路: 背包DP后,P=所有的总价值/2,然后从P开始往两边找到第一个满足的价值. 可以降维,但是要注意for循环的顺序. 看代码. 代码: int v[55], m[55]; bool dp[250005]; int main(){ int n; while(scanf("%d",&n)!=EOF && n>=0){

POJ 1384 Piggy-Bank 背包DP

所谓的完全背包,就是说物品没有限制数量的. 怎么起个这么intimidating(吓人)的名字? 其实和一般01背包没多少区别,不过数量可以无穷大,那么就可以利用一个物品累加到总容量结尾就可以了. 本题要求装满的,故此增加个限制就可以了. #include <stdio.h> #include <stdlib.h> #include <string.h> inline int min(int a, int b) { return a < b? a : b; } c

BZOJ 1042 硬币购物(完全背包+DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1042 题意:给出四种面值的硬币c1,c2,c3,c4.n个询问.每次询问用d1.d2.d3.d4个相应的硬币能够拼出多少种总和为s? 思路:(1)首先,用完全背包求出f[i]表示四种硬币的数量无限制拼出i的方案数. (2)接着我们来理解 x=f[s]-f[s-(d1+1)*c1]的含义:x表示c1硬币的数量不超过d1个而其他三种硬币的数量不限制拼成s的方案数.我们举着例子来说明, 假设

HDU 5616 Jam&#39;s balance 背包DP

Jam's balance Problem Description Jim has a balance and N weights. (1≤N≤20)The balance can only tell whether things on different side are the same weight.Weights can be put on left side or right side arbitrarily.Please tell whether the balance can me