PyTorch 计算机视觉的迁移学习教程代码详解 (TRANSFER LEARNING FOR COMPUTER VISION TUTORIAL )

PyTorch 原文:

https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

参考文章:

https://www.cnblogs.com/king-lps/p/8665344.html

https://blog.csdn.net/shaopeng568/article/details/95205345

https://blog.csdn.net/yuyangyg/article/details/80018574

# License: BSD
# Author: Sasank Chilamkurthy

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()   # interactive mod 打开交互模式e

# Data augmentation and normalization for training
# Just normalization for validation
# torchvision.transforms模块提供了一般的图像转换操作类,一般使用Compose把多个步骤整合到一起
data_transforms = {
    ‘train‘: transforms.Compose([
        transforms.RandomResizedCrop(224),  # 先将给定的PIL.Image随机切,然后再resize成给定的尺寸大小,裁剪到224*224
        transforms.RandomHorizontalFlip(),  # 随机水平翻转给定的PIL.Image,概率为0.5,即一半的概率翻转,一半的概率不翻转
        transforms.ToTensor(),  # 将 PIL Image 或者 ndarray 转换为 tensor,并且归一化至[0-1], shape=chw
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  # 给定均值(R,G,B),方差(R,G,B),将会把tensor正则化,即 Normalized_image = (image-mean)/std
    ]),
    ‘val‘: transforms.Compose([
        transforms.Resize(256),  # 将输入的PIL图像调整为给定的大小
        transforms.CenterCrop(224),  # 将给定的PIL.Image进行中心切割
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  # 对数据按通道进行标准化,即先减均值,再除以标准差,注意是 hwc
    ]),
}

# Tensor总结
# (1)Tensor 和 Numpy都是矩阵,区别是前者可以在GPU上运行,后者只能在CPU上;
# (2)Tensor和Numpy互相转化很方便,类型也比较兼容
# (3)Tensor可以直接通过print显示数据类型,而Numpy不可以

# Visualize a few images
# Let’s visualize a few training images so as to understand the data augmentations.
def imshow(inp, title=None):
    """Imshow for Tensor."""
    # transpose是求转置矩阵函数
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    # clip(a, a_min, a_max, out=None)表示数组a中所有的数限定到范围a_min和a_max中
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(1)  # pause a bit so that plots are updated

data_dir = ‘hymenoptera_data‘
# ImageFolder的第一个参数是在指定的路径下寻找图片,第二个参数transform是指对图像进行转换操作
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in [‘train‘, ‘val‘]}
# dataLoader第一个参数是传入的数据集,第二个参数batch_size表示每个batch有多少个样本,shuffle表示在每个epoch开始的时候,对数据进行重新排序
# num_workers(int, optional)这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程(默认为0)。
# !!!!!!!!!注意,这里num_workers的参数要改成0,不然在我电脑上就会出错
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=0) for x in [‘train‘, ‘val‘]}
# 得到训练集和测试集的长度
dataset_sizes = {x: len(image_datasets[x]) for x in [‘train‘, ‘val‘]}
# 得到类别的名称
class_names = image_datasets[‘train‘].classes
# 检验是否可用cuda
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# ------------------- isualize a few images --------------------- #
# Get a batch of training data
inputs, classes = next(iter(dataloaders[‘train‘]))

# Make a grid from batch
# mark_grid的作用是将若干幅图像拼成一幅图像。其中padding的作用就是子图像与子图像的pad有多宽
# 此时make_grid的输入仍为Tensor(cwh),而imshow的时候要转回whc,而后要乘以方差并加上均值
out = torchvision.utils.make_grid(inputs)

# imshow(out, title=[class_names[x] for x in classes])
# 导入预训练的模型,如果pretrained=False或者为不带参数表示只导入网络结构,不导入参数
# model_ft即为含训练好参数的残差网络
model_ft = models.resnet18(pretrained=True)
# 最后一个全连接的输入维度,这里实为512
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
# 将最后一个全连接由(512, 1000)改成(512, 2)
model_ft.fc = nn.Linear(num_ftrs, 2)
# 将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行
model_ft = model_ft.to(device)
# 定义计算损失的函数
criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
# 神经网络优化器,优化我们的网络,使网络在训练过程中快起来,节省网络训练时间
# 要想优化网络,并且先构造一个优化器
# SGD(stochastic Gradient Descent),SGD会把数据拆分后再分批不断放入NN中计算,每次使用一批数据,虽然不能反映整体数据的情况,不过却很
# 程度上加速了NN的训练过程,而且不会跌势太多准确率
# Momentum 传统的参数 W 的更新是把原始的 W 累加上一个负的学习率(learning rate) 乘以校正值 (dx)。
# 我们把这个人从平地上放到了一个斜坡上, 只要他往下坡的方向走一点点, 由于向下的惯性, 他不自觉地就一直往下走, 走的弯路也变少了. 这就是 Momentum 参数更新
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
# lr_scheduler是所有学习率改变策略的基类
# lr_scheduler提供了基于多种epoch数目调整学习率的方法
# step_size为int型,表示学习衰减期,指几个epoch衰减一次,gamma为学习衰减的乘积因子
# 每7个epoch衰减0.1倍
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

# 定义样本跑的次数
num_epochs = 25

# ----------------------- 训练模型 ---------------------- #
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    # 计算模型初始开始训练时间
    since = time.time()

    # 先拷贝一份当前模型的参数,后面迭代过程中若遇到更优模型则替换
    best_model_wts = copy.deepcopy(model.state_dict())
    # 初始准确率
    best_acc = 0.0

    for epoch in range(num_epochs):
        print(‘Epoch {}/{}‘.format(epoch, num_epochs - 1))
        print(‘-‘ * 10)

        # Each epoch has a training and validation phase
        for phase in [‘train‘, ‘val‘]:
            if phase == ‘train‘:
                model.train()  # Set model to training mode,设置为训练模式
            else:
                model.eval()   # Set model to evaluate mode,设置为测试模式

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # zero the parameter gradients
                # 把梯度置零,把loss关于weight的倒数变成0
                # 为下一次的训练清空上一步的残余更新参数值
                optimizer.zero_grad()

                # forward
                # track history if only in train
                # set_grad_enabled用于设置梯度打开或关闭的上下文管理器
                # set_grad_enabled将基于它的参数mode使用或禁用梯度。标记是否使能梯度,主要用在有条件的使能梯度
                with torch.set_grad_enabled(phase == ‘train‘):
                    # 前向传播求出预测的值
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    # 求损失
                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == ‘train‘:
                        # 误差反向传播,计算参数更新值
                        loss.backward()
                        # 将参数更新值施加到网络的参数上
                        optimizer.step()

                # statistics
                # 计算损失值和精确度
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
            if phase == ‘train‘:
                # 应用概率学习率的策略,更新optimizer对象每个para_group字典的lr键的值,param_group[‘lr‘]=lr
                # 在训练的时候进行迭代
                scheduler.step()

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print(‘{} Loss: {:.4f} Acc: {:.4f}‘.format(phase, epoch_loss, epoch_acc))

            # deep copy the model
            # 当验证时遇到了更好的模型则予以保留
            if phase == ‘val‘ and epoch_acc > best_acc:
                best_acc = epoch_acc
                # 拷贝模型参数
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    # 显示计算模型训练时间
    time_elapsed = time.time() - since
    print(‘Training complete in {:.0f}m {:.0f}s‘.format(time_elapsed // 60, time_elapsed % 60))
    print(‘Best val Acc: {:4f}‘.format(best_acc))

    # load best model weights
    # 载入最优模型参数
    model.load_state_dict(best_model_wts)
    return model

# model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)

# ----------------- visualizing the model predictions ----------------- #
def visualize_model(model, num_images=6):
    # 检验是否为训练模型
    was_training = model.training
    # 把模式设置为测试模式
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    # operations inside don‘t track history
    # 使下面的计算图不占用内存,不保存梯度,减小内存的占用
    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders[‘val‘]):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis(‘off‘)
                ax.set_title(‘predicted: {}‘.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)

visualize_model(model_ft)

# ----------------------------------- 局部微调 --------------------------------------- #
# ConvNet as fixed feature extractor
# 冻结除全连接层以外的最后所有层参数。我们需要设置 requires_grad == False 来冻结参数以便在反向过程中不需要计算梯度
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    # 将所有参数求导设为否
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
# 得到最后一个全连接的输入维度
num_ftrs = model_conv.fc.in_features
# 将最后一个全连接由(512, 1000)改成(512, 2),取代最后一个全连接
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as opposed to before.
# !!!!!!!注意,这里只有全连接层参数被优化
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)

# On CPU this will take about half the time compared to previous scenario.
# This is expected as gradients don’t need to be computed for most of the network. However, forward does need to be computed.

model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=25)
visualize_model(model_conv)

# 显示前关掉交叉模式
plt.ioff()
plt.show()

pass

本人初学水平,主要参考他人代码,有错误欢迎指正

原文地址:https://www.cnblogs.com/ttweixiao-IT-program/p/11972212.html

时间: 2024-10-10 15:38:04

PyTorch 计算机视觉的迁移学习教程代码详解 (TRANSFER LEARNING FOR COMPUTER VISION TUTORIAL )的相关文章

Dancing Links 学习 AND 代码详解

今天花时间学习了下Dancing Links,其核心思想是降低在搜索中的范围,减少复杂.降低的方法就是将用链式结构构造的图中不需要的点去掉.如果回溯再恢复. 这个方法依赖的数据结构是用数组存储的十字链表L[NN],R[NN],U[NN],D[NN] 左右上下的链接 构造数据结构: head,cnt,L[NN],R[NN],U[NN],D[NN],H[NN],COL[NN],S[NN],ROW[NN] head就是头结点,cnt就是在构图时结点的编号,S[NN]是某一列上有多少个元素,COL[NN

DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解

DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43221829 本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介. 经详细注释的代码:放在我的gith

DeepLearning tutorial(4)CNN卷积神经网络原理简介+代码详解

DeepLearning tutorial(4)CNN卷积神经网络原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43225445 本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Convolutional Neural Networks (LeNet).经详细注释的代码和原始代码:放在我的github地址上,可下载. 一.CNN卷积神经网络原理

tiny_cnn代码详解(3)——层间继承关系

在上一篇博文中我们顺利将tiny_cnn的程序调试通过,在这篇博文中我们尝试从整体角度给出对tiny_cnn这个深度学习框架的解读,重点论述一下其各个层直接类封装的继承关系. 一.卷积神经网络快速入门 tiny_cnn作为卷积神经网络的一种实现形式,在探讨其框架结构之前,首先需要简要介绍一些卷积神经网络相关的知识.首先,给出经典卷积神经网络的网络结构: 这个是经典的LeNet-5的网络结构图,五层网络.最早用于支票上的手写数字识别,也是最早的商业化的深度学习模型.从上图中可以看出,卷积神经网络主

Github-jcjohnson/torch-rnn代码详解

Github-jcjohnson/torch-rnn代码详解 [email protected] http://www.cnblogs.com/swje/ 作者:Zhouwan  2016-3-18 声明: 1)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 2)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢. 请联系:[email protected] 或[email protected] 本研

开胃小菜——impress.js代码详解

README 友情提醒,下面有大量代码,由于网页上代码显示都是同一个颜色,所以推荐大家复制到自己的代码编辑器中看. 今天闲来无事,研究了一番impress.js的源码.由于之前研究过jQuery,看impress.js并没有遇到太大的阻碍,读代码用了一个小时,写这篇文章用了近三个小时,果然写文章比读代码费劲多了. 个人感觉impress.js的代码量(算上注释一共不到1000行)和难度(没有jQuery的各种black magic= =)都非常适合新手学习,所以写一个总结,帮助大家理解源码. 考

JBPM学习(六):详解流程图

概念: 流程图的组成: a. 活动 Activity / 节点 Node b. 流转 Transition / 连线(单向箭头) c. 事件 1.流转(Transition) a) 一般情况一个活动中可以指定一个或多个Transition i. 开始活动(Start)中只能有一个Transition. ii. 结束活动(End)中没有Transition. iii. 其他活动中有一条或多条Transition b) 如果Transition只有一个,则可以不指定名称(名称是null):如果有多个

iOS学习--UIScrollView 原理详解

iOS学习--UIScrollView 原理详解 http://blog.csdn.net/yanfangjin/article/details/7898189 ScrollView UIScrollView UIScrollView为了显示多于一个屏幕的内容或者超过你能放在内存中的内容. Scroll View为你处理缩小放大手势,UIScrollView实现了这些手势,并且替你处理对于它们的探测和回应.其中需要注意的子类是UITableView以及UITextView(用来显示大量的文字).

后缀数组学习笔记【详解|图】

后缀数组学习笔记[详解] 老天,一个后缀数组不知道看了多少天,最后终于还是看懂了啊! 最关键的就是一会儿下标表示排名,一会用数值表示排名绕死人了. 我不知道手跑了多少次才明白过来.其实我也建议初学者手跑几遍,但是一定要注意数组的意义,否则就是无用功. 数组含义: s[ ]:输入的字符串,预处理的时候会在末尾加上一个0 sa[ ]:它的下标就是后缀排名 x[ ] = t[ ]:用来保存第一关键字排名,注意!它的数值是排名.初始时恰好是字符串的ASCII码.字典序嘛! y[ ] = t2[ ]:它的