最近在摸mxnet和tensorflow。两个我都搭起来了。tensorflow跑了不少代码,总的来说用得比较顺畅,文档很丰富,api熟悉熟悉写代码没什么问题。
今天把两个平台做了一下对比。同是跑mnist,tensorflow 要比mxnet 慢一二十倍。mxnet只需要半分钟,tensorflow跑了13分钟。
在mxnet中如何开跑?
cd /mxnet/example/image-classification python train_mnist.py 我用的是最新的mxnet版本。运行脚本它会自动下载数据集。然后刷刷刷的刷屏了。我们来看看这个脚本如何写的,从而建立mxnet编程思路:import find_mxnetimport mxnet as mximport argparseimport os, sysimport train_model def _download(data_dir): if not os.path.isdir(data_dir): os.system("mkdir " + data_dir) os.chdir(data_dir) if (not os.path.exists(‘train-images-idx3-ubyte‘)) or \ (not os.path.exists(‘train-labels-idx1-ubyte‘)) or \ (not os.path.exists(‘t10k-images-idx3-ubyte‘)) or \ (not os.path.exists(‘t10k-labels-idx1-ubyte‘)): os.system("wget http://data.dmlc.ml/mxnet/data/mnist.zip") os.system("unzip -u mnist.zip; rm mnist.zip") os.chdir("..") def get_loc(data, attr={‘lr_mult‘:‘0.01‘}): """ the localisation network in lenet-stn, it will increase acc about more than 1%, when num-epoch >=15 """ loc = mx.symbol.Convolution(data=data, num_filter=30, kernel=(5, 5), stride=(2,2)) loc = mx.symbol.Activation(data = loc, act_type=‘relu‘) loc = mx.symbol.Pooling(data=loc, kernel=(2, 2), stride=(2, 2), pool_type=‘max‘) loc = mx.symbol.Convolution(data=loc, num_filter=60, kernel=(3, 3), stride=(1,1), pad=(1, 1)) loc = mx.symbol.Activation(data = loc, act_type=‘relu‘) loc = mx.symbol.Pooling(data=loc, global_pool=True, kernel=(2, 2), pool_type=‘avg‘) loc = mx.symbol.Flatten(data=loc) loc = mx.symbol.FullyConnected(data=loc, num_hidden=6, name="stn_loc", attr=attr) return loc def get_mlp(): """ multi-layer perceptron """ data = mx.symbol.Variable(‘data‘) fc1 = mx.symbol.FullyConnected(data = data, name=‘fc1‘, num_hidden=128) act1 = mx.symbol.Activation(data = fc1, name=‘relu1‘, act_type="relu") fc2 = mx.symbol.FullyConnected(data = act1, name = ‘fc2‘, num_hidden = 64) act2 = mx.symbol.Activation(data = fc2, name=‘relu2‘, act_type="relu") fc3 = mx.symbol.FullyConnected(data = act2, name=‘fc3‘, num_hidden=10) mlp = mx.symbol.SoftmaxOutput(data = fc3, name = ‘softmax‘) return mlp def get_lenet(add_stn=False): """ LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE (1998) """ data = mx.symbol.Variable(‘data‘) if(add_stn): data = mx.sym.SpatialTransformer(data=data, loc=get_loc(data), target_shape = (28,28), transform_type="affine", sampler_type="bilinear") # first conv conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=20) tanh1 = mx.symbol.Activation(data=conv1, act_type="tanh") pool1 = mx.symbol.Pooling(data=tanh1, pool_type="max", kernel=(2,2), stride=(2,2)) # second conv conv2 = mx.symbol.Convolution(data=pool1, kernel=(5,5), num_filter=50) tanh2 = mx.symbol.Activation(data=conv2, act_type="tanh") pool2 = mx.symbol.Pooling(data=tanh2, pool_type="max", kernel=(2,2), stride=(2,2)) # first fullc flatten = mx.symbol.Flatten(data=pool2) fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500) tanh3 = mx.symbol.Activation(data=fc1, act_type="tanh") # second fullc fc2 = mx.symbol.FullyConnected(data=tanh3, num_hidden=10) # loss lenet = mx.symbol.SoftmaxOutput(data=fc2, name=‘softmax‘) return lenet def get_iterator(data_shape): def get_iterator_impl(args, kv): data_dir = args.data_dir if ‘://‘ not in args.data_dir: _download(args.data_dir) flat = False if len(data_shape) == 3 else True train = mx.io.MNISTIter( image = data_dir + "train-images-idx3-ubyte", label = data_dir + "train-labels-idx1-ubyte", input_shape = data_shape, batch_size = args.batch_size, shuffle = True, flat = flat, num_parts = kv.num_workers, part_index = kv.rank) val = mx.io.MNISTIter( image = data_dir + "t10k-images-idx3-ubyte", label = data_dir + "t10k-labels-idx1-ubyte", input_shape = data_shape, batch_size = args.batch_size, flat = flat, num_parts = kv.num_workers, part_index = kv.rank) return (train, val) return get_iterator_impl def parse_args(): parser = argparse.ArgumentParser(description=‘train an image classifer on mnist‘) parser.add_argument(‘--network‘, type=str, default=‘mlp‘, choices = [‘mlp‘, ‘lenet‘, ‘lenet-stn‘], help = ‘the cnn to use‘) parser.add_argument(‘--data-dir‘, type=str, default=‘mnist/‘, help=‘the input data directory‘) parser.add_argument(‘--gpus‘, type=str, help=‘the gpus will be used, e.g "0,1,2,3"‘) parser.add_argument(‘--num-examples‘, type=int, default=60000, help=‘the number of training examples‘) parser.add_argument(‘--batch-size‘, type=int, default=128, help=‘the batch size‘) parser.add_argument(‘--lr‘, type=float, default=.1, help=‘the initial learning rate‘) parser.add_argument(‘--model-prefix‘, type=str, help=‘the prefix of the model to load/save‘) parser.add_argument(‘--save-model-prefix‘, type=str, help=‘the prefix of the model to save‘) parser.add_argument(‘--num-epochs‘, type=int, default=10, help=‘the number of training epochs‘) parser.add_argument(‘--load-epoch‘, type=int, help="load the model on an epoch using the model-prefix") parser.add_argument(‘--kv-store‘, type=str, default=‘local‘, help=‘the kvstore type‘) parser.add_argument(‘--lr-factor‘, type=float, default=1, help=‘times the lr with a factor for every lr-factor-epoch epoch‘) parser.add_argument(‘--lr-factor-epoch‘, type=float, default=1, help=‘the number of epoch to factor the lr, could be .5‘) return parser.parse_args() if __name__ == ‘__main__‘: args = parse_args() if args.network == ‘mlp‘: data_shape = (784, ) net = get_mlp() elif args.network == ‘lenet-stn‘: data_shape = (1, 28, 28) net = get_lenet(True) else: data_shape = (1, 28, 28) net = get_lenet() # train train_model.fit(args, net, get_iterator(data_shape)) 先看Main函数,就是读配置参数,读网络结构,包括设置数据的大小,然后就是调用已有的包train_model。然后传入这之前设置的三个参数。就开始训练了。编程架构也蛮清晰的。模块化也搞的好。接着看看参数设置问题。参数导入了很多配置文件,基本上caffe中的Proto都在这个里面设置了。包括数据集地址,批大小,学习率,损失函数,等等。然后看看读网络结构,读网络结构就是在一层一层的搭积木,根据之前读入的配置文件或者自己定义一些参数。搭好积木就开始训练了。caffe的一个缺点是不够灵活,毕竟不是自己写代码,只是写配置文件,总感觉受制于人。mxnet和tensorflow就比较方便,提供api,你可以按你的方式来调用和定义网络结构。总的说来,其实是后两个框架模块化做的好,提供底层的api支持你写自己的网络。caffe要自己写网络层的话还是很费劲的
时间: 2024-10-27 12:28:06