这道题是计算几何,这是写的第一道计算几何,主要是难在如何求入射光线的反射光线。
我们可以用入射光线 - 入射光线在法线(交点到圆心的向量)上的投影*2 来计算反射光线,自己画一个图,非常清晰明了。
具体到程序里,我们可以 v2 = v1 - fa / Length(fa) * 2 * ( Dot(v1, fa) /
Length(fa)) 来求,简单来说就是用内积(点积)求出入射光线在法线上的长度,然后用法线的单位向量乘这个长度就可以了。
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cmath>
#define N 55
#define inf 0x7f7f7f7f
using namespace std;struct Point3
{
double x, y, z;
Point3(double x=0, double y=0, double z=0):x(x), y(y), z(z) { }
};
typedef Point3 Vector3;
const double eps = 1e-9;int dcmp(double x)
{
if (fabs(x) < eps) return 0;
else return x < 0 ? -1 : 1;
}int n;
double r[N];
Point3 Begin, circle[N];
Vector3 Direct;Vector3 operator + (Vector3 A, Vector3 B) { return Vector3(A.x+B.x, A.y+B.y, A.z+B.z); }
Vector3 operator - (Point3 A, Point3 B) { return Vector3(A.x-B.x, A.y-B.y, A.z-B.z); }
Vector3 operator * (Vector3 A, double p) { return Vector3(A.x*p, A.y*p, A.z*p); }
Vector3 operator / (Vector3 A, double p) { return Vector3(A.x/p, A.y/p, A.z/p); }double min(double x, double y) { return x < y ? x : y; }
double Dot (Vector3 A, Vector3 B) { return A.x*B.x + A.y*B.y + A.z*B.z; }
double Length (Vector3 A) { return sqrt(Dot(A, A)); }
double Angle (Vector3 A, Vector3 B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
Vector3 Cross (Vector3 A, Vector3 B) { return Vector3(A.y*B.z - A.z*B.y, A.z*B.x - A.x*B.z, A.y*B.z - A.z*B.y); }
double disPointLine(Point3 P, Point3 A, Point3 B)
{
Vector3 v1, v2;
v1 = B - A; v2 = P - A;
return Length(Cross(v1, v2)) / Length(v1);
}int main()
{
scanf("%d", &n);
double x, y, z;
for (int i = 1; i <= n; ++i)
{
scanf("%lf%lf%lf%lf", &x, &y, &z, &r[i]);
circle[i] = Point3(x, y, z);
}
scanf("%lf%lf%lf", &x, &y, &z); Begin = Point3(x, y ,z);
scanf("%lf%lf%lf", &x, &y, &z); Direct = Point3(x, y, z) - Begin;
int nowcircle = 0;
for (int w = 1; w <= 11; ++w)
{
int nextcircle = 0;
double mindis = inf;
for (int i = 1; i <= n; ++i)
{
if (i == nowcircle) continue;
double a, b, c;
Point3 nc = circle[i];
a = Direct.x*Direct.x + Direct.y*Direct.y + Direct.z*Direct.z;
b = 2 * ((Begin.x-nc.x) * Direct.x + (Begin.y-nc.y)*Direct.y + (Begin.z-nc.z)*Direct.z);
c = (Begin.x-nc.x)*(Begin.x-nc.x) + (Begin.y-nc.y)*(Begin.y-nc.y) + (Begin.z-nc.z)*(Begin.z-nc.z) - r[i]*r[i];
double delta;
delta = b*b - 4*a*c;
if (delta < 0) continue;
double ans1, ans2;
ans1 = (-b + sqrt(delta)) / (2*a);
ans2 = (-b - sqrt(delta)) / (2*a);
if (dcmp(ans1) < 0 && dcmp(ans2) < 0) continue;
else if (dcmp(ans1) < 0 && ans2 < mindis)
{
mindis = ans2;
nextcircle = i;
}
else if (dcmp(ans2) < 0 && ans1 < mindis)
{
mindis = ans1;
nextcircle = i;
}
else if (min(ans1, ans2) < mindis)
{
mindis = min(ans1, ans2);
nextcircle = i;
}
}
if (!nextcircle) break;
else if (w == 11)
{
printf(" etc.");
break;
}
else
{
if (w == 1) printf("%d", nextcircle);
else printf(" %d", nextcircle);
Point3 jiao;
Vector3 v1, v2, fa;
jiao = Begin + Direct*mindis; v1 = Direct;
fa = circle[nextcircle] - jiao;
v2 = (fa / Length(fa)) * (2 * Dot(v1, fa) / Length(fa));
nowcircle = nextcircle;
Begin = jiao; Direct = v1 - v2;
}
}
printf("\n");
}
sgu 110 Dungeon