这里利用2-gram模型来提取一篇英文演讲的初略的主题句子,这里是英文演讲的的链接:http://pythonscraping.com/files/inaugurationSpeech.txt
n-gram模型是指n个连续的单词组成的序列
以下贴出代码(基于python2.7),详情参考《python网络数据采集》
#-*- coding:utf-8 -*- from urllib2 import urlopen import re import string import operator #单词清洗 def isCommon(ngram): ngrams=ngram.split(‘ ‘) #清洗以下没有意义的单词 commonWords=[‘the‘, ‘be‘, ‘and‘, ‘of‘, ‘a‘, ‘in‘, ‘to‘, ‘have‘, ‘it‘, ‘i‘, ‘for‘, ‘you‘, ‘he‘, ‘with‘, ‘on‘, ‘do‘, ‘say‘, ‘this‘, ‘they‘, ‘is‘, ‘an‘, ‘at‘, ‘but‘, ‘we‘, ‘his‘, ‘from‘, ‘that‘, ‘not‘, ‘by‘, ‘she‘, ‘or‘, ‘what‘, ‘go‘, ‘their‘, ‘can‘, ‘who‘, ‘get‘, ‘if‘, ‘would‘, ‘her‘, ‘all‘, ‘my‘, ‘make‘, ‘about‘, ‘know‘, ‘will‘, ‘as‘, ‘up‘, ‘one‘, ‘time‘, ‘has‘, ‘been‘, ‘there‘, ‘year‘, ‘so‘, ‘think‘, ‘when‘, ‘which‘, ‘them‘, ‘some‘, ‘me‘, ‘people‘, ‘take‘, ‘out‘, ‘into‘, ‘just‘, ‘see‘, ‘him‘, ‘your‘, ‘come‘, ‘could‘, ‘now‘, ‘than‘, ‘like‘, ‘other‘, ‘how‘, ‘then‘, ‘its‘, ‘our‘, ‘two‘, ‘more‘, ‘these‘, ‘want‘, ‘way‘, ‘look‘, ‘first‘, ‘also‘, ‘new‘, ‘because‘, ‘day‘, ‘use‘, ‘no‘, ‘man‘, ‘find‘, ‘here‘, ‘thing‘, ‘give‘, ‘many‘, ‘well‘] #判断2-gram中是否存在要清洗的单词 for word in ngrams: if word.lower() in commonWords: return False return True #数据清洗 def cleanInput(input): #装换多个\n和空格为单个空格 input=re.sub(‘\n+‘,‘ ‘,input) input=re.sub(‘\[[0-9]*\]‘,‘‘,input) input=re.sub(‘ +‘,‘ ‘,input) input=bytes(input.decode(‘utf-8‘)) input=input.decode(‘ascii‘,‘ignore‘) cleanInput=[] input=input.split(‘ ‘) for item in input: #string.punctuation 去除所有符号:!"#$%&‘()*+,-./:;<=>[email protected][\]^_`{|}~ item=item.strip(string.punctuation) if len(item)>1 or (item.lower()==‘a‘ or item.lower()==‘i‘): cleanInput.append(item) return cleanInput #input为输入的整个字符串,n表示以几个字符作为参照,即n-gram def ngrams(input,n): input=cleanInput(input) #声明一个数组 output={} for i in range(len(input)-n-1): ngramTemp=‘ ‘.join(input[i:i+n]) if isCommon(ngramTemp): if ngramTemp not in output: output[ngramTemp]=0 output[ngramTemp]+=1 return output html=urlopen(‘http://pythonscraping.com/files/inaugurationSpeech.txt‘).read().decode(‘utf-8‘) content=str(html) ngrams=ngrams(content,2) #key=operator.itemgetter(0) 表示以字典中的key(字符首字母)为前提排序 #key=operator.itemgetter(1) 表示以字典中的value(数字)为前提排序 #reverse=True 表示降序输出 sortedNGrams=sorted(ngrams.items(),key=operator.itemgetter(1),reverse=True) #输出有意义的2-gram的单词,以及它们出现的数据 print sortedNGrams #获取上面的的2-gram单词 keywords=[] for i in range(0,len(sortedNGrams)): word=sortedNGrams[i] #除去概率小于2的词组 if int(word[1])>2: keywords.append(word[0]) #定义一个集合存取文章的所有句子 sentences=set() #定义一个main_sentences来存储结果 main_sentences=set() i=content.split(‘.‘) for j in i: sentences.add(j) for keyword in keywords: for sentence in sentences: #获取第一个存在该词组的句子 b=sentence.find(keyword) if b!=-1: #除去句子里的\n和多余空格 sentence=re.sub(" +"," ",sentence) sentence=re.sub("\n+","",sentence) main_sentences.add(sentence) break for i in main_sentences: print i
获取的2-gram的词组为(出现次数大于2):
[u‘United States‘, u‘General Government‘, u‘executive department‘, u‘legislative body‘, u‘Mr Jefferson‘, u‘Chief Magistrate‘, u‘called upon‘, u‘same causes‘, u‘whole country‘, u‘Government should‘]
输出的句子有点多,这里就不贴出来了,这只是初级处理这篇演讲。
时间: 2024-10-05 09:57:18