Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 28204 Accepted Submission(s): 12561
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
Source
Asia 1996, Shanghai (Mainland China)
#include<stdio.h> #include<string.h> #include<math.h> int visit[40],a[40],n; int fun(int x) { for(int i=2;i<=sqrt(x);i++) if(x%i==0) return 0; return 1; } void dfs(int k) { if(fun(a[0]+a[n-1])&&k==n) { printf("%d",a[0]); for(int i=1;i<n;i++) { printf(" %d",a[i]); } printf("\n"); return; } for(int i=2;i<=n;i++) { if((!visit[i])&&fun(i+a[k-1])) { visit[i]=1; a[k]=i; dfs(k+1); visit[i]=0; } } } int main() { int kase=1; while(scanf("%d",&n)!=EOF) { printf("Case %d:\n",kase++); memset(visit,0,sizeof(visit)); a[0]=1; dfs(1); printf("\n"); } return 0; }