我是做Tracking 的,对于速度要求很高。发现傅里叶变换可以使用。于是学习之!
核心: 最根本的一点就是将时域内的信号转移到频域里面。这样时域里的卷积可以转换为频域内的乘积!
在分析图像信号的频率特性时,对于一幅图像,直流分量表示预想的平均灰度,低频分量代表了大面积背景区域和缓慢变化部分,高频部分代表了它的边缘,细节,跳跃部分以及颗粒噪声. 因此,我们可以做相应的锐化和模糊的处理:提出其中的高频分量做傅里叶逆变换得到的就是锐化的结果。提出其中的低频分量做傅里叶逆变换得到的就是模糊的结果。
最不能理解的应该是:截取频域图中的任何一个区域对应的都是原来的整张图的区域,而不是对应的局部。
因为频域内的各个点都反映的是整张图的一个状态。我们可以用时间和频率来理解:当你走完一段单位路程的时候,假设你花了100秒,那么你的频率就是0.01HZ。这个0.01HZ显然体现的是一个整体的结果。而不是局部。我们再由公式来看:
可以很明显的知道频域内的每一个点的值都是由整个图像求出来的。当然以上得出的结果,我们一般只关注幅值频谱图。也就是说真正起作用的就是前面的那个cos x而已. 于是我们可以知道,在整个范围内(0<k <N, 0<l <N),低频分量集中于四个角。且其他地方的值只可能比这个小。在原点的傅里叶变换即等于图像的平均灰度级。因为
在原点处常常为零,F(0,0)有时称做 频率谱的直流成分。
使用:
当图像的尺寸是2,3,5的整数倍时,计算速度最快。因此opencv里面有一个函数:
int m = getOptimalDFTSize( I.rows ); int n = getOptimalDFTSize( I.cols ); // 在边缘添加0
它可以使得图片的尺寸可以满足这个要求。
但是这样就需要对原来的图像进行大小的处理,因此使用函数:CopyMakeBorder复制图像并且制作边界。(处理边界卷积)
Mat padded;
copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
将原始的图像I 扩充为理想的大小放在padded里面。
接下来我们需要给计算出来的结果分配空间:
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)}; Mat complexI; merge(planes, 2, complexI); // 为延扩后的图像增添一个初始化为0的通道
然后便可以进行傅里叶变换了:
dft(complexI, complexI); // 变换结果很好的保存在原始矩阵中
得到的结果有两部分,实数部分和虚数部分,你可以分别对这两部分进行操作:
split(complexI, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I)) magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude Mat magI = planes[0];
当然还可以进行:归一化:
normalize(magI, magI, 0, 1, CV_MINMAX); // 将float类型的矩阵转换到可显示图像范围 // (float [0, 1]).
另外重要的一个应用是: convolveDFT。
其中的 *代表的是 卷积。我觉得这也是我们进行离散傅里叶变换的目的。使得计算的速度大大的增加。
先来说一下卷积在图像中的意义:
假设图像f(x),模板是g(x),然后将模版g(x)在模版中移动,每到一个位置,就把f(x)与g(x)的定义域相交的元素进行乘积并且求和,得出新的图像一点,就是被卷积后的图像. 模版又称为卷积核.卷积核做一个矩阵的形状.(当然边缘点可能需要特殊的处理,同时这个操作和滤波也很像,也许就是一回事)。
#include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" #include <iostream> using namespace cv; using namespace std; //http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#dft[2] void convolveDFT(Mat A, Mat B, Mat& C) { // reallocate the output array if needed C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type()); Size dftSize; // calculate the size of DFT transform dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1); dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1); // allocate temporary buffers and initialize them with 0's Mat tempA(dftSize, A.type(), Scalar::all(0));//initial 0 Mat tempB(dftSize, B.type(), Scalar::all(0)); // copy A and B to the top-left corners of tempA and tempB, respectively Mat roiA(tempA, Rect(0,0,A.cols,A.rows)); A.copyTo(roiA); Mat roiB(tempB, Rect(0,0,B.cols,B.rows)); B.copyTo(roiB); // now transform the padded A & B in-place; // use "nonzeroRows" hint for faster processing dft(tempA, tempA, 0, A.rows); dft(tempB, tempB, 0, B.rows); // multiply the spectrums; // the function handles packed spectrum representations well mulSpectrums(tempA, tempB, tempA, DFT_COMPLEX_OUTPUT); //mulSpectrums(tempA, tempB, tempA, DFT_REAL_OUTPUT); // transform the product back from the frequency domain. // Even though all the result rows will be non-zero, // you need only the first C.rows of them, and thus you // pass nonzeroRows == C.rows dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows); // now copy the result back to C. tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C); // all the temporary buffers will be deallocated automatically } int main(int argc, char* argv[]) { const char* filename = argc >=2 ? argv[1] : "Lenna.png"; Mat I = imread(filename, CV_LOAD_IMAGE_GRAYSCALE); if( I.empty()) return -1; Mat kernel = (Mat_<float>(3,3) << 1, 1, 1, 1, 1, 1, 1, 1, 1); cout << kernel; Mat floatI = Mat_<float>(I);// change image type into float Mat filteredI; convolveDFT(floatI, kernel, filteredI); normalize(filteredI, filteredI, 0, 1, CV_MINMAX); // Transform the matrix with float values into a // viewable image form (float between values 0 and 1). imshow("image", I); imshow("filtered", filteredI); waitKey(0); }
其中:
C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
C 为什么是这样的勒?想想一个特殊的例子就知道了:当A,B尺寸相等的时候,这个时候的高斯滤波得到的也就是中心点的那一个值(卷积核滤波的差别在于需要绕中心180度旋转)。
MulSpectrums 是对于两张频谱图中每一个元素的乘法。
void cvMulSpectrums( const CvArr* src1, const CvArr* src2, CvArr* dst, int flags ); src1 第一输入数组 src2 第二输入数组 dst 输出数组,和输入数组有相同的类型和大小。 flags 下面列举的值的组合: CV_DXT_ROWS - 把数组的每一行视为一个单独的频谱 (参见 cvDFT 的参数讨论). CV_DXT_MUL_CONJ - 在做乘法之前取第二个输入数组的共轭.
第四个参数flag值没有指定,应指定为DFT_COMPLEX_OUTPUT或是DFT_REAL_OUTPUT.
参考资料:
http://blog.sina.com.cn/s/blog_4bdb170b01019atv.html
http://www.cnblogs.com/xianglan/archive/2010/12/30/1922386.html
http://www.cnblogs.com/tornadomeet/archive/2012/07/26/2610414.html
http://blog.csdn.net/ubunfans/article/details/24787569
http://blog.csdn.net/lichengyu/article/details/18848281