numpy中的ndarray方法和属性

原文地址

NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是一个一维数组,而这个一维数组中每个元素又是一个一维数组。所以这个一维数组就是NumPy中的轴(axes),而轴的数量——秩,就是数组的维数。

Numpy库中的矩阵模块为ndarray对象,有很多属性:T,data, dtype,flags,flat,imag,real,size,

itemsize,nbytes,ndim,shape,strides,ctypes,base等等。

>>> import numpy as np
>>> x=np.array([[1,2,3],[9,8,7],[6,5,4]])
>>> x.T   #获得x的转置矩阵
array([[1, 9, 6],
[2, 8, 5],
[3, 7, 4]])
>>> print x.flags  #返回数组内部的信息
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> x.flat[2:6]   #将数组变为1维数组,并获取其中的一部分数据
array([3, 9, 8, 7])
>>> x.flat = 4; x   #将值赋给1维数组,再转化成有原有数组的大小形式
array([[4, 4, 4],
[4, 4, 4],
[4, 4, 4]])
>>> x
array([[4, 4, 4],
[4, 4, 4],
[4, 4, 4]])

ndarray.imag # 为复变函数中含有虚部的数组,如下:

>>> x = np.sqrt([2+3j, 5+0j])   # 创建一个复数
>>> x
array([ 1.67414923+0.89597748j,  2.23606798+0.j        ])
>>> x.imag  #获得复数的虚部
array([ 0.89597748,  0.        ])
>>> x.real   #获得复数的实部
array([ 1.67414923,  2.23606798])
>>> x=np.arange(10)  #随机生成一个数组,并重新命名一个空间的数组
>>> x.reshape(2,5)
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> x.size   #获得数组中元素的个数
10
>>> x.ndim  #获得数组的维数
>>> x.shape  #获得数组的(行数,列数)
(10,)
>>> y=x.reshape(5,2)
>>> y
array([[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
>>> y.base   #获得该数组基于另外一个对象数组而来,如下,y是根据x而来
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Ndarray对象的方法

ndarray.ptp(axis=None, out=None) : 返回数组的最大值—最小值或者某轴的最大值—最小值

ndarray.clip(a_min, a_max, out=None) : 小于最小值的元素赋值为最小值,大于最大值的元素变为最大值。

ndarray.all():如果所有元素都为真,那么返回真;否则返回假

ndarray.any():只要有一个元素为真则返回真

ndarray.swapaxes(axis1, axis2) : 交换两个轴的元素,如下

>>> z.swapaxes(0,1)
array([[2, 4, 6, 8],
[3, 5, 7, 9]])
  • 下面为改变数组维度和大小的方法:

ndarray.reshape(shape[, order]) :返回重命名数组大小后的数组,不改变元素个数.

ndarray.resize(new_shape[, refcheck]) :改变数组的大小(可以改变数组中元素个数).

ndarray.transpose(*axes) :返回矩阵的转置矩阵

ndarray.swapaxes(axis1, axis2) : 交换两个轴的元素后的矩阵.

ndarray.flatten([order]) : 复制一个一维的array出来.

ndarray.ravel([order]) :返回为展平后的一维数组.

ndarray.squeeze([axis]) :移除长度为1的轴。

ndarray.tolist():将数组转化为列表

ndarray.take(indices, axis=None, out=None, mode=’raise’):获得数组的指定索引的数据,如:

>>> a=np.arange(12).reshape(3,4)
>>> a
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11]])
>>> a.take([1,3],axis=1) #提取1,3列的数据
array([[ 1,  3],
[ 5,  7],
[ 9, 11]])

numpy.put(a, ind, v, mode=’raise’):用v的值替换数组a中的ind(索引)的值。Mode可以为raise/wrap/clip。Clip:如果给定的ind超过了数组的大小,那么替换最后一个元素。

numpy.repeat(a, repeats, axis=None):重复数组的元素,如:

>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],
[3, 4],
[3, 4]])

numpy.tile(A, reps):根据给定的reps重复数组A,和repeat不同,repeat是重复元素,该方法是重复数组。

ndarray.var(axis=None, dtype=None, out=None, ddof=0):返回数组的方差,沿指定的轴。

ndarray.std(axis=None, dtype=None, out=None, ddof=0):沿给定的轴返回数则的标准差

ndarray.prod(axis=None, dtype=None, out=None):返回指定轴的所有元素乘机

ndarray.cumprod(axis=None, dtype=None, out=None):返回指定轴的累积,如下:

>>> a
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11]])
>>> a.cumprod(axis=1)  #得到竖轴的累积
array([[   0,    0,    0,    0],
[   4,   20,  120,  840],
[   8,   72,  720, 7920]])

ndarray.mean(axis=None, dtype=None, out=None):返回指定轴的数组元素均值

ndarray.cumsum(axis=None, dtype=None, out=None):返回指定轴的元素累计和。如:

>>> a
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11]])
>>> a.cumsum(axis=1)
array([[ 0,  1,  3,  6],
[ 4,  9, 15, 22],
[ 8, 17, 27, 38]])

ndarray.sum(axis=None, dtype=None, out=None):返回指定轴所有元素的和

ndarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None):返回沿对角线的数组元素之和

ndarray.round(decimals=0, out=None):将数组中的元素按指定的精度进行四舍五入,如下:

>>> np.around([0.37, 1.64])
array([ 0., 2.])
>>> np.around([0.37, 1.64], decimals=1)
array([ 0.4, 1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
array([ 0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
array([ 1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([ 0, 0, 0, 10])

ndarray.conj():返回所有复数元素的共轭复数,如:

>>> b=np.array([[1+2j,3+0j],[3+4j,7+5j]])
>>> b
array([[ 1.+2.j,  3.+0.j],
[ 3.+4.j,  7.+5.j]])
>>> b.conj()
array([[ 1.-2.j,  3.-0.j],
[ 3.-4.j,  7.-5.j]])

ndarray.argmin(axis=None, out=None):返回指定轴最小元素的索引。

ndarray.min(axis=None, out=None):返回指定轴的最小值

ndarray.argmax(axis=None, out=None):返回指定轴的最大元素索引值

ndarray.diagonal(offset=0, axis1=0, axis2=1):返回对角线的所有元素。

ndarray.compress(condition, axis=None, out=None):返回指定轴上条件下的切片。

ndarray.nonzero():返回非零元素的索引

时间: 2024-10-12 10:53:05

numpy中的ndarray方法和属性的相关文章

python面向对象中的,变量,方法与属性

1. 类的成员 class Foo: # 方法 def __init__(self,name): # 实例变量/字段 self.name = name # 方法 def func(self): pass # obj,Foo类的对象 # obj,Foo类的实例 obj = Foo('朱奎峰') 成员共分为三类: 变量: - 实例变量(字段) - 公有实例变量(字段) - 私有实例变量(字段) - 类变量(静态字段) - 公有类变量(静态字段) - 私有类变量(静态字段) 实例一: class Fo

numpy中 array数组的shape属性

numpy.array 的shape属性理解 在码最邻近算法(K-Nearest Neighbor)的过程中,发现示例使用了numpy的array数组管理,其中关于array数组的shape(状态)属性,下面是对应的理解 numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数.有时候我们可能需要知道某一维的特定维数. 二维情况 >>> import numpy as np >>> y = np.array([[1,2,3],[4,5,6]]) &

numpy 中的reshape,flatten,ravel 数据平展,多维数组变成一维数组

numpy 中的reshape,flatten,ravel 数据平展,多维数组变成一维数组 import numpy as np 使用array对象 arr1=np.arange(12).reshape(3,4) print(arr1) print(type(arr1)) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] <class 'numpy.ndarray'> flatten 展平 a=arr1.flatten() # 默认参数order=C,按照行进行展平:o

tomcat实现http协议中的请求方法

Tomcat是实现了http协议的web服务器. HttpServlet是整个J2EE体系的核心类.来自客户端的全部请求均有该类进行处理和转发.它由Tomcat根据web.xml中的servlet配置标记进行装载和管理. 以下是servlet继承结构. javax.servlet.httpClass HttpServlet java.lang.Object   javax.servlet.GenericServlet       javax.servlet.http.HttpServlet Al

python 中的特殊方法,纠正自己笨笨的记忆

1. __new__ 和 __init__ 的区别 python 2.x 老式类(默认继承type) class A: pass 老式类中没有__new__类方法(也就是说定义也不会执行,它不是老式类的类方法),__Init__ 作为构造函数,创建实例对象,并初始化. 过程: 类 => __init__() => 实例(self)创建并初始化 __init__: 不能有返回值 python 3 和 python 2.x(显示继承新式类) class A(object): pass 注: 在Py

numpy中ndarray数据结构简介

一.综述 1.ndarray的本质是:对象     2.ndarray是numpy中的数据结构(叫做:n维数组),是同构数据多维容器,所有元素必须是相同类型 3.面向数组的编程和思维方式:用简洁的数组表达式代替循环写法,通常叫做 --‘矢量化’ 二.ndarray属性: 1.ndarray.ndim:数组的维数(即数组轴的个数,也被称作为  秩 ). 2.ndarray.shape:数组的维数.维度,返回一个元组,这个元组的长度就是维度的数目,即ndim属性.比如2排3列的矩阵,其shape就是

numpy中matrix的特殊属性

一.matrix特殊属性解释 numpy中matrix有下列的特殊属性,使得矩阵计算更加容易 摘自 NumPy Reference Release 1.8.1 1.1 The N-dimensional array (ndarray) An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. 摘自 NumPy Reference Release 1.9.1

Numpy 中tile(A, reps)方法

官方文档: 个人理解: 返回值 ndarray,该函数是通过reps重复A后得到一个多位数组, 有点绕... 参数 A几乎可以是全体类型, array, list , tuple, dict, matrix, int, long ,str, bool 等等 reps,类型也很多, array, tuple, list, dict ,int ,long, bool 但是不管怎样都必须是 "一维数组(不一定是数组, 这里说成类一维数组)" , 如[1,2,3,4] , (1,2,3)或 3

java中常用的包、类、以及包中常用的类、方法、属性-----io包

由于最近有需要,所以下面是我整理的在开发中常用的包.类.以及包中常用的类.方法.属性:有需要的看看 java中常用的包.类.以及包中常用的类.方法.属性 常用的包 java.io.*; java.util.*; java.lang.*; java.math.*; java.sql.*; java.text.*; java.awt.*; javax.swing.*;   包名 接口 类 方法 属性 java.io.*; java.io.Serializable实现序列化 java.io.Buffe