分类算法——k最近邻算法(Python实现)(文末附工程源代码)

kNN算法原理

k最近邻(k-Nearest Neighbor)算法是比较简单的机器学习算法。它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本在特征空间中的k个最近邻(最相似)的样本中大多数属于某一个类别,则该样本也属于这个类别。

kNN算法的步骤

第一阶段:确定k值(指最近的邻居的个数),一般是一个奇数

第二阶段:确定距离度量公式。文本分类一般使用夹角余弦,得出待分类数据点和所有已知类别的样本点,从中选择距离最近的k个样本:

第三阶段:统计这k个样本点钟各个类别的数量

kNN算法的Python实现

第一阶段:可以利用NBayes中的初始化Nbayes_lib.py,点击这里查看

第二阶段:实现夹角余弦的距离公式

from numpy import *

import operator

from Nbayes_pre import
*

k=3

#夹角余弦距离公式

def cosdist(vector1,vector2):

return dot(vector1,vector2)/(linalg.norm(vector1)*linalg.norm(vector2))

第三阶段:kNN实现分类器

#kNN分类器
#测试集 testdata,训练集 trainSet,类别标签 listClasses,k k个邻居数
def classify(testdata,trainSet,listClasses,k):
    dataSetSize=trainSet.shape[0]#返回样本集的行数
    distances=array(zeros(dataSetSize))
    for indx in xrange(dataSetSize):
        distances[indx]=cosdist(testdata,trainSet[indx])
    #根据生成的夹角余弦从大到小排序,结果为索引号
    sortedDistIndicies=argsort(-distances)
    classCount={}
    #获取角度最小的前k项作为参考项
    for i in range(k):
        votelIlabel=listClasses[sortedDistIndicies[i]]#按排序顺序返回样本集对应的类别标签
        classCount[votelIlabel]=classCount.get(votelIlabel,0)+1#为字典classCount按value重新排序
    #对分类字典classCount按value重新排序
    #sorted(data.iteritems(),key=operator.itemgetter(1),reverse=True)
    #该句是按字典值排序的固定用法
    #classCount.iteritems():字典迭代器
    #key:排序参数;operator.itemgetter(1):多级排序
    sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reversed=True)
    return sortedClassCount[0][0]#返回序最高的一项

#评估分类结果
dataSet,listClasses=loadDataSet()
nb=NBayes()
nb.train_set(dataSet,listClasses)
#使用之前贝叶斯分类阶段的数据集及生成的TF向量进行分类
print (classify(nb.tf[3],nb.tf,listClasses,k))

工程源代码
时间: 2024-10-13 12:39:14

分类算法——k最近邻算法(Python实现)(文末附工程源代码)的相关文章

图说十大数据挖掘算法(一)K最近邻算法

如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法. 先来一张图,请分辨它是什么水果 很多同学不假思索,直接回答:"菠萝"!!! 仔细看看同学们,这是菠萝么?那再看下边这这张图. 这两个水果又是什么呢? 这就是菠萝与凤梨的故事,下边即将用菠萝和凤梨,给大家讲述怎么用一个算法来知道这是个什么水果的过程,也就是什么是K最近邻算法. (给非吃货同学们补充一个生活小常识,菠萝的叶子有刺,凤梨没有.菠萝的凹槽处是黄色的,而凤梨的凹槽处是绿色的,以后千万不要买错哦!!!)

编程入门:C语言基础知识全网超全不用到处找了!(文末附清单)

你背或者不背,干货就在那里,不悲不喜 你学或者不学,编程就在那里,不来不去 听到这话的你是否略感扎心? 编程入门:C语言基础知识全网超全不用到处找了!(文末附清单)01基础知识 计算机系统的主要技术指标与系统配置. 计算机系统.硬件.软件及其相互关系. 微机硬件系统的基本组成. 包括:中央处理器(运算器与控制器),内存储器(RAM与ROM),外存储器(硬盘.软盘与光盘),输入设备(键盘与鼠标)输出设备(显示器与打印机).如果大家如果在自学遇到困难,想找一个C++的学习环境,可以加入我们的C++学

机器学习——k最近邻算法(K-Nearest Neighbor,Python实现)

一.什么是看KNN算法? 二.KNN算法的一般流程 三.KNN算法的Python代码实现 numpy模块参考教程:http://old.sebug.net/paper/books/scipydoc/index.html 一:什么是看KNN算法? kNN算法全称是k-最近邻算法(K-Nearest Neighbor) kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个

转载: scikit-learn学习之K最近邻算法(KNN)

版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 ==============================================

机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocessing.py import numpy as np class StandardScaler: def __init__(self): self.mean_ = None self.scale_ = None def fit(self, X): """根据训练数据集X获得数据的均

聚类算法:K-means 算法(k均值算法)

k-means算法:      第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设定,例如可选开始的$K$个模式样本的向量值作为初始聚类中心.      第二步:逐个将需分类的模式样本$\{x\}$按最小距离准则分配给$K$个聚类中心中的某一个$z_j(1)$.假设$i=j$时, \[D_j (k) = \min \{ \left\| {x - z_i (k)} \right\|

源码分析 Kafka 消息发送流程(文末附流程图)

温馨提示:本文基于 Kafka 2.2.1 版本.本文主要是以源码的手段一步一步探究消息发送流程,如果对源码不感兴趣,可以直接跳到文末查看消息发送流程图与消息发送本地缓存存储结构. 从上文 初识 Kafka Producer 生产者,可以通过 KafkaProducer 的 send 方法发送消息,send 方法的声明如下: Future<RecordMetadata> send(ProducerRecord<K, V> record) Future<RecordMetada

最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现

k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是通过程序员经验得到. 假设此时来了一个新的样本绿色,我们需要预测该样本的数据是良性还是恶性肿瘤.我们从训练样本中选择k=3个离新绿色样本最近的样本,以选取的样本点自己的结果进行投票,如图投票结果为蓝色:红色=3:0,所以预测绿色样本可能也是恶性肿瘤. 再比如 此时来了一个新样本,我们选取离该样本最近

http程序接口、调用(最入门级,文末附Demo)

HTTP协议简介 既然是基于HTTP协议开发,那么就首先要了解下HTTP协议的相关内容- 在TCP/IP体系结构中,HTTP属于应用层协议,位于TCP/IP协议的顶层.浏览Web时,浏览器通过HTTP协议与Web服务器交换信息.这些信息(文档)类型的格式由MIME定义. HTTP协议具有以下的特点: HTTP按客户/服务器模式工作HTTP支持客户(一般情况是浏览器)与服务器的通讯,相互传输数据.HTTP定义的事务处理由以下四步组成: 客户与服务器建立连接: 客户向服务器提出请求: 如果请求被接受