机器学习---支持向量机(SVM)

非常久之前就学了SVM,总认为不就是找到中间那条线嘛,但有些地方模棱两可,真正编程的时候又是一团浆糊。參数任意试验,毫无章法。既然又又一次学到了这一章节,那就要把之前没有搞懂的地方都整明确,嗯~

下面使用到的图片来自上海交大杨旸老师的课件。网址例如以下:http://bcmi.sjtu.edu.cn/~yangyang/ml/

支持向量机就是一种分类方法。仅仅是起的这个名字,看起来非常复杂而已。

中间一条线:分类用的,须要求出系数W , b

支持向量:线性超平面上的点,能够理解为两边的线上的点

要求:中间那条线到两边的线的距离相等。

支持向量(能够想象成那两条线上每条线上的点)的个数<= m +1,m为特征 x 的维数。

目的:找的中间那条线的參数 w 和 b 。

线性SVM

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

这个图我看了非常久。一直没有搞懂 y 在哪里,依据公式明明就直接求出全部的 x 了啊。难道 y = a ?y = a - b ?

事实上 y 在这里不是坐标轴啦。是分类0,1,2,...,1,-1之类的,坐标轴上全都是 x1,x2,x3,....这种啦

搞清楚这个概念,接下来就非常好理解了:

两条线之间的距离就直接拿 wx1 + b = a 和  wx2 + b = -a 相减就好啦(x1是上边直线上的点。x2是下边直线上的点),至于为神马这样 2r 就刚好是垂直距离,非常easy,两个点坐标相减就是两点之间的向量,膜就是距离。找两个连线与分类直线垂直的点就OK拉。真正用公式推导是这种:

w(x1-x2)=2a

||w|| ||x1-x2|| cos<w, x1-x2> = 2a

||x1-x2|| cos<w, x1-x2> = 2a/||w||

公式左边就是距离啦。

证明的第一问也好理解了,这里的在线上指的是 x1 和 x2 都在 wx + b =0 这条线上,相减刚好就是<w, x1- x2> = 0

解释一下:

理想情况下,全部正样本(y=1)都在 wx + b = a 这条线的上边。全部负样本(y=-1)都在 wx + b = -a 这条线的下边,可是两个公式太麻烦啦。那就把 y 当作正负号乘到前边好啦。刚好把上下两条直线公式改编合成这样: (wx + b)y = a ,这种点是在线上的,可是我们要求正负样本在两側就好啦,所以改 = 为 >=

max 那句就是说只满足下边的公式还不够,我们须要的是两条线中间的距离最大

总之:就是对于随意的点 j 求使得两条线的距离最大的 w 和 b

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

总是带着 a 不太方便。所以我们把等式两边都除以 a ,就有了新的 w 和 b,无所谓啦,反正都是符号。所以就没改啦。

因为a都变成1了。所以最大化 2a / || w || 倒过来就成了 || w || / 2,也就能够简化为求 w . w = || w || 的最小值了~

非线性SVM

一切看起来进展非常顺利,然而!真实的数据非常有可能出现一些不太友好的点哦。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

于是,我们就须要容忍这些错误~

c:tradeoff parameter 事实上就是一个系数

#mistake:错误数。对于每个错误的点都为1,正确点都取0,最后加到一起(公式为了让总错误最小)

c和#mistake都是变量,能够合在一起成为一个的。但不便于理解

#mistake是算出来的,系数C是依据交叉验证得到的——(交叉验证。。不大懂,之后再说咯)

上边这个公式有个缺点:对于不在分类线外側的全都定义为错的(也就是非黑即白,0/1 loss)。没有考虑偏离大小的问题

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

公式把#mistake改成这样,就相当于对于每个错误的样本都算出其相应的偏离量。这样放在公式里就是全部偏离量加起来最小。

偏离量是算出来的,系数C是依据交叉验证得到的——(交叉验证。。不大懂,之后再说咯)

规范化损失变量

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

直接套公式吧。

hinge loss 我想多解释一下。由于这个样本在它应在的范围(如 >=1 )。那么它事实上是没有损失的,也就是全为0就好,所以也许这个损失函数蛮符合SVM的特点~

多分类问题

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

方法一:

如上图所看到的——每次把一个类别拿出来,其它类别合成一个大类。当作二分类问题来做。

反复n次就OK

缺点:分类的那条线会偏向训练数据量比較小的那一类

方法二:同一时候求

解释一下公式:

左边是分类在 j 的一个点 xj 乘以它自己的系数,须要满足 w(yj) . xj + b(yj) > = 1

參考方法一,假设这个点用在其它的分类公式中的时候,须要满足 w(y‘) . xj + b(y’) < = 1

所以两个公式放在一起就是: w(yj) . xj + b(yj) > = 1 > = w(y‘) . xj + b(y‘)

至于非要加上的那个1~~我也不知道为神马,莫非是为了和之前的公式看起来差点儿相同?0.0

加上松弛变量和损失变量就变成了这样:

约束优化(Constrained Optimized)

剧透下:下面主要介绍了一种用于解上边那个有关SVM的优化问题方法~(没学过最优化伤不起。得补啊)

首先举个有关求最小值的样例

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

上图样例说明,b 取不同的值的时候我们得到的最小值是不一样的

第一个图没有约束,第二个图约束没有起到作用,第三个图约束起作用啦

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

上图说的是拉格朗日对偶:

首先给定初始问题,求满足<= 和 = 那两个条件(这是概括讲的,全部的约束条件都能够转换为这两种形式)。而且 f(w) 取最小值的时候 w 的值

当中 Alpha 和 Beta 是拉格朗日乘数(就是起了个名)

Lemma(引理):

这时候把这些式子加起来。最大也就是 f(w) 了。由于 g h要么小于等于0,要么等于0,而且要求 Alpha(i) > 0。  所以他们总的和  L 不会比 f(w)  再大了~

o/w是otherwise的意思,此时 max L 取值为无穷的解释例如以下:

假设有一个样本不符合限制条件g-i(w) = 0,即存在一个g-i(w) > 0,那么max L(w, alpha, beta) —>无穷。

由于Alpha-i为随意參数。Alpha-i > 0, g-i(w) > 0,当Alpha-i 趋向于无穷的时候。max Alpha-i  g-i(w)也趋向于无穷,所以此时的 max L 趋向于无穷~

事实上大括号后边第一行,我们另一个条件也能够合进来。这个条件就是满足 min(w)  f(w)。也就是让 L 的最大值 f(w) 最小然后求 w 嘛,就在前边加个min,就是最后一个式子啦

这就是又写了一遍引理,第二个是它的对偶问题,弱对偶和强对偶能够看下图理解下:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

就是先求最大再求最小。和先求最小再求最大能不能对上,有没有交点的问题。没有就是弱对偶,有就是强对偶

依据上图我们就能够看出来,事实上找到最优值就是找鞍点(最大or最小,看起来像马鞍的形状,所以那个点就叫鞍点)的过程。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

求鞍点。就是求各种一阶导为0,第三个式子是由于之前说了 g 代表 <= 0 那一堆公式,那么取得鞍点的时候,它必须取极值点 = 0,最后两个公式是之前就规定好的~

这五个式子就是KKT条件,假设 w , Alpha , Beta 满足KKT条件,那么它们就是那个引理和它对偶问题的一个解

讲了这么一堆。最终把解法讲好了。然后就要用到我们的SVM上了

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

经过上边一堆推导,我们最终把 w 和 b 去掉(用x y Alpha 表示)了。仅仅剩下 Alpha 是未知的了~。

于是这就转变为了二次规划问题(这样就非常好解么?木有学过最优化啊。不知道这是神马啊)

到眼下,你仅仅须要知道 w 被那个求和 替代了,SVM有个核是 x‘x 就好

依据KKT条件,有一部分 Alpha 不为0,看图,支持向量就是 Alpha 不为 0 的点

依据我们已知的能够算出来的 w 。依据分类的那条线 wx + b = 0,就能够求出 b, 然后我们就能够測试新数据 z 啦

最优的 w 能够看作是一部分点的一个线性组合,这个稀疏表达能够看作是KNN分类器结构中的数据压缩(没懂,重要么?)

为了计算 Alpha ,我们仅仅须要知道核(kernel,即x‘x)就好啦

測试的时候使用下边的式子(sign表示取符号,可能这个式子在模拟二分类问题,所以仅仅要符号即可了):

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

下边解释一下核(kernel)的作用

就是把 x 多加一个维度(or 没有添加维度 or 降维),使得原本非线性的问题成为线性的。

在之前的问题中。我们提到过。我们仅仅须要提供x‘x就能够了,所以这里把 x‘x 替换一下。就是带进公式之前先行处理一下,也就是加了那个核运算,那么我们可能会得到更好的结果哦

下边这是几个核的样例:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

关于选神马核比較好,编程的时候大胆试吧。。。

我本以为公式已经全了呢额。直到我看到了下边的修改,又对Alpha 加了个最大值C的约束,其它没变~

SMO算法

首先我们来了解一下神马是坐标上升(Coordinate Ascent)

一个无约束优化问题例如以下:

能够使用坐标上升算法来解

这个和梯度下降非常像, 梯度下降是选下降最快的方向。可是坐标上升每次仅仅改变一个维度(变量),而其它维度(变量)不变,例如以下图:

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" >

可是当我们遇到了SVM这样的有约束的问题,它的不同之处在于有一个等式(即第三个等式:求和 Alpha . y =0)。因此我们须要定义两个变量。Alpha(i)和Alpha(j)同一时候变,可是Alpha(i)能够用Alpha(j)表示出来,事实上还是能够理解为一个变量哦~~

这时候坐标上升就转换为了SMO算法啦!

下边是解SVM那个式子的SMO算法的核心思想:

后边的课件是证明SMO收敛,数学问题就就不讲了哈。主要就是满足KKT条件吧~~

编程的话,libsvm不错,好像前边的博文有讲到使用方法哦~

假设博文中有不论什么问题,欢迎随时与我联系修正~在此感谢李凡师兄。邵志文同学,朱能军同学对本文存疑的解答^.^

时间: 2024-11-05 00:48:50

机器学习---支持向量机(SVM)的相关文章

吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_classfication(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 iris 数据集 iris=datasets.lo

机器学习——支持向量机SVM在R中的实现

支持向量机是一个相对较新和较先进的机器学习技术,最初提出是为了解决二类分类问题,现在被广泛用于解决多类非线性分类问题和回归问题.继续阅读本文,你将学习到支持向量机如何工作,以及如何利用R语言实现支持向量机. 支持向量机如何工作? 简单介绍下支持向量机是做什么的: 假设你的数据点分为两类,支持向量机试图寻找最优的一条线(超平面),使得离这条线最近的点与其他类中的点的距离最大.有些时候,一个类的边界上的点可能越过超平面落在了错误的一边,或者和超平面重合,这种情况下,需要将这些点的权重降低,以减小它们

机器学习——支持向量机(SVM)之核函数(kernel)

对于线性不可分的数据集,可以利用核函数(kernel)将数据转换成易于分类器理解的形式. 如下图,如果在x轴和y轴构成的坐标系中插入直线进行分类的话, 不能得到理想的结果,或许我们可以对圆中的数据进行某种形式的转换,从而得到某些新的变量来表示数据.在这种表示情况下,我们就更容易得到大于0或者小于0的测试结果.在这个例子中,我们将数据从一个特征空间转换到另一个特征空间,在新的空间下,我们可以很容易利用已有的工具对数据进行处理,将这个过程称之为从一个特征空间到另一个特征空间的映射.在通常情况下,这种

机器学习——支持向量机(SVM)

1.基于最大间隔分隔数据

机器学习与数据挖掘-支持向量机(SVM)(一)

最近在看斯坦福大学的机器学习的公开课,学习了支持向量机,再结合网上各位大神的学习经验总结了自己的一些关于支持向量机知识. 一.什么是支持向量机(SVM)? 1.支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析.支持向量机属于一般化线性分类器,这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区,因此支持向量机也被称为最大边缘区分类器. 2.支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个

机器学习第7周-炼数成金-支持向量机SVM

支持向量机SVM 原创性(非组合)的具有明显直观几何意义的分类算法,具有较高的准确率源于Vapnik和Chervonenkis关于统计学习的早期工作(1971年),第一篇有关论文由Boser.Guyon.Vapnik发表在1992年(参考文档见韩家炜书9.10节)思想直观,但细节异常复杂,内容涉及凸分析算法,核函数,神经网络等高深的领域,几乎可以写成单独的大部头与著.大部分非与业人士会觉得难以理解.某名人评论:SVM是让应用数学家真正得到应用的一种算法 思路 简单情况,线性可分,把问题转化为一个

机器学习笔记——SVM之一

SVM(Support Vector Machine),中文名为 支持向量机,就像自动机一样,听起来异常神气,最初总是纠结于不是机器怎么能叫"机",后来才知道其实此处的"机"实际上是算法的意思. 支持向量机一般用于分类,基本上,在我的理解范围内,所有的机器学习问题都是分类问题.而据说,SVM是效果最好而成本最低的分类算法. SVM是从线性可分的情况下最优分类面发展而来的,其基本思想可以用下图表示: (最优分类面示意图) 图中空心点和实心点代表两类数据样本,H为分类线

关于支持向量机(SVM)一些不得不说的话

做为一种监督学习模型,支持向量机(Supprot Vector Machine)在机器学习领域内很重要.首先,SVM用来干什么?一句话将,就是分类(Classification).比较简单的分类,比如线性分类.Logistic 回归等等,得到的分类结果未必是最优的.而SVM则旨在找到一个最优的分类器.从这个目的出发,SVM提出了Soft Margin,Support Vector等等看似很直观的概念. 对支持向量机的介绍,往往从线性模型开始讲起.如果想对这个部分有一个了解,有两个英文的资料绝对值

[白话解析] 深入浅出支持向量机(SVM)之核函数

[白话解析] 深入浅出支持向量机(SVM)之核函数 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解支持向量机中的核函数概念,并且给大家虚构了一个水浒传的例子来做进一步的通俗解释. 0x01 问题 在学习核函数的时候,我一直有几个很好奇的问题. Why 为什么线性可分很重要? Why 为什么低维数据升级到高维数据之后,就可以把低维度数据线性可分? What 什么是核函数,其作用是什么? How 如何能够找到核函数? 不知道大家是否和我一样有这些疑问,在后文中, 我将通过

支持向量机(SVM)(二)-- 拉格朗日对偶(Lagrange duality)

简介: 1.在之前我们把要寻找最优的分割超平面的问题转化为带有一系列不等式约束的优化问题.这个最优化问题被称作原问题.我们不会直接解它,而是把它转化为对偶问题进行解决. 2.为了使问题变得易于处理,我们的方法是把目标函数和约束全部融入一个新的函数,为了使问题变得易于处理,我们的方法是把目标函数和约束全部融入一个新的函数,即拉格朗日函数,再通过这个函数来寻找最优点.即拉格朗日函数,再通过这个函数来寻找最优点. 3.约束条件可以分成不等式约束条件和等式约束条件,只有等式约束条件的问题我们在高等数学课