POJ 1300 Door Man(欧拉通路)

题目描写叙述:

你是一座大庄园的管家。

庄园有非常多房间,编号为 0、1、2、3。...。

你的主人是一个心不在 焉的人,常常沿着走廊任意地把房间的门打开。多年来,你掌握了一个诀窍:沿着一个通道,穿 过这些大房间,并把房门关上。你的问题是是否能找到一条路径经过全部开着门的房间。并使得: 1) 通过门后马上把门关上。 2) 关上了的门不再打开。 3) 后回到你自己的房间(房间 0),而且全部的门都已经关闭了。 在本题中。给定房间列表。及连通房间的、开着的门。并给定一个起始房间。推断是否存在
这种一条路径。不须要输出这种路径。仅仅需推断是否存在。

假定随意两个房间之间都是连通 的(可能须要经过其它房间)。

输入描写叙述:

输入文件包括多个(多可达 100 个)測试数据,每一个測试数据之间没有空行隔开。

每一个測试数据包括 3部分: 起始行-格式为“START M N”,当中 M 为管理员起始所处的房间号。N 为房间的总数(1 ≤N≤20); 房间列表-一共 N行,每行列出了一个房间通向其它房间的房间号(仅仅需列出比它的号码大 的房间号,可能有多个,按升序排列),比方房间 3有门通向房间 1、5、7。则房间 3的信息行内
容为“5 7”,第一行代表房间 0,后一行代表行间 N-1。

有可能有些行为空行。当然后一行肯 定是空行,由于 N-1 是大的房间号;两个房间之间可能有多扇门连通。

终止行-内容为"END"。

输入文件后一行是"ENDOFINPUT",表示输入结束。

输出描写叙述:

每一个測试数据相应一行输出,假设能找到一条路关闭全部的门,而且回到房间 0,则输出"YES X"。X是他关闭的门的总数。否则输出"NO"。

就是推断是否能构成欧拉通路·咯

无向图存在欧拉通路的充要条件:

1.
是连通图

2.
奇度节点个数为0或2,当中为0时为欧拉回路,为2时是以这两个点节点为端点的欧拉通路

#include<cstdio>
#include<cstring>
#include<cctype>
const int N = 21;
using namespace std;

int main()
{
    int door, cnt, m, n, deg[N];
    char s[N], c;
    while(~scanf("%s", s), strcmp(s, "ENDOFINPUT"))
    {
        memset(deg, 0, sizeof(deg));
        door = cnt = 0;
        scanf("%d %d\n", &m, &n);
        for(int i = 0; i < n; ++i)
        {
            while(scanf("%c", &c))
            {
                if(isdigit(c)) ++door, ++deg[i], ++deg[c - ‘0‘];
                else if(c == ‘ ‘) continue;
                else break;
            }
            if(deg[i] % 2) ++cnt;
        }

        scanf("%s", s);
        bool ok = (cnt == 0 && m == 0 ) || (m && cnt == 2 && deg[m] % 2 );
        if(ok) printf("YES %d\n", door);
        else printf("NO\n");
    }
    return 0;
}

Door Man

Description

You are a butler in a large mansion. This mansion has so many rooms that they are merely referred to by number (room 0, 1, 2, 3, etc...). Your master is a particularly
absent-minded lout and continually leaves doors open throughout a particular floor of the house. Over the years, you have mastered the art of traveling in a single path through the sloppy rooms and closing the doors behind you. Your biggest problem is determining
whether it is possible to find a path through the sloppy rooms where you:

  1. Always shut open doors behind you immediately after passing through
  2. Never open a closed door
  3. End up in your chambers (room 0) with all doors closed

In this problem, you are given a list of rooms and open doors between them (along with a starting room). It is not needed to determine a route, only if one is possible.

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will
be no blank lines separating data sets.

A single data set has 3 components:

  1. Start line - A single line, "START M N", where M indicates the butler‘s starting room, and N indicates the number of rooms in the house (1 <= N <= 20).
  2. Room list - A series of N lines. Each line lists, for a single room, every open door that leads to a room of higher number. For example, if room 3 had open doors to rooms 1, 5, and 7, the line for room 3 would read
    "5 7". The first line in the list represents room 0. The second line represents room 1, and so on until the last line, which represents room (N - 1). It is possible for lines to be empty (in particular, the last line will always be empty since it is the highest
    numbered room). On each line, the adjacent rooms are always listed in ascending order. It is possible for rooms to be connected by multiple doors!
  3. End line - A single line, "END"

Following the final data set will be a single line, "ENDOFINPUT".

Note that there will be no more than 100 doors in any single data set.

Output

For each data set, there will be exactly one line of output. If it is possible for the butler (by following the rules in the introduction) to walk into his chambers and
close the final open door behind him, print a line "YES X", where X is the number of doors he closed. Otherwise, print "NO".

Sample Input

START 1 2
1

END
START 0 5
1 2 2 3 3 4 4

END
START 0 10
1 9
2
3
4
5
6
7
8
9

END
ENDOFINPUT

Sample Output

YES 1
NO
YES 10
时间: 2024-12-11 23:22:35

POJ 1300 Door Man(欧拉通路)的相关文章

POJ 1300.Door Man 欧拉通路

Door Man Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2596   Accepted: 1046 Description You are a butler in a large mansion. This mansion has so many rooms that they are merely referred to by number (room 0, 1, 2, 3, etc...). Your mas

POJ 2337 Catenyms (有向图欧拉通路)

Catenyms Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9914   Accepted: 2588 Description A catenym is a pair of words separated by a period such that the last letter of the first word is the same as the last letter of the second. For e

POJ 1780 Code(欧拉通路)

输入n(1<=n<=6),输出长度为10^n + n -1 的字符串答案. 其中,字符串以每n个为一组,使得所有组都互不相同,且输出的字符串要求字典序最小. 显然a[01...(n-1)]和a[12...n]为相邻组,可以看做有一条边从结点a[01...(n-1)]到结点a[12...n]. 题目转化成求欧拉通路.如果以每组的值为结点,则有10^6个结点,10^7条边.会MLE.(此时其实是哈密顿通路?) 这里以每组的值为边的边权,而边的2个结点分别是前n-1位数和后n-1位数.这样点是10^

[ACM] POJ 2513 Colored Sticks (Trie树,欧拉通路,并查集)

Colored Sticks Time Limit: 5000MS   Memory Limit: 128000K Total Submissions: 29736   Accepted: 7843 Description You are given a bunch of wooden sticks. Each endpoint of each stick is colored with some color. Is it possible to align the sticks in a st

POJ训练计划_Colored Sticks(字典树+判断欧拉通路)

解题报告 http://blog.csdn.net/juncoder/article/details/38236333 题目传送门 题意: 问给定一堆的棒,两端有颜色,相同的颜色的棒可以头尾相接,能否连在一条直线. 思路: 把每一根棒两端看成两个点,之间连着线,判断这样的一个图中是否有欧拉通路 欧拉通路: 在联通无向图中,经过G的每一条边一次并且仅有一次的路径为欧拉通路. 求欧拉通路的充分条件:图为联通图,并且仅有两个奇度数的结点或无奇度结点. #include <queue> #includ

POJ 2337 Catenyms 欧拉通路

题目链接:点击打开链接 题意: 把输入的n个由小写字母构成的字符串连成字典序最小的一句话,使得所有字符串都恰好出现一次且相邻两个字符串相邻的字母相同 思路: 比如abcd,我们认为是这样一条边:a->d 所以我们在a->d间建一条边. 1.如:abcd, dfgh, 那么得到的边就是 a->d, d->h. 而题目的目标是每个字符串恰好用一次,即每条边恰好用一次.也就是找一条欧拉通路 2.我们只需要关心字符串的首尾2个字母,所以我们认为图里只有26个节点. 3.判断欧拉通路是否存在

POJ--1300--Door Man【推断无向图欧拉通路】

链接:http://poj.org/problem?id=1300 题意:有n个房间.每一个房间有若干个门和别的房间相连.管家从m房间開始走.要回到自己的住处(0),问是否有一条路能够走遍全部的门而且没有反复的路. 无向图欧拉通路充要条件:G为连通图,而且G仅有两个奇度结点(度数为奇数的顶点)或者无奇度结点. 无向图欧拉回路充要条件:G为无奇度结点的连通图. 思路:推断是否存在欧拉通路.依据欧拉通路.欧拉回路的性质来做.有两种情况:一种是欧拉回路.全部房间的门的个数都是偶数个,而且此时初始房间不

POJ--1300--Door Man【判断欧拉通路】

链接:http://poj.org/problem?id=1300 题意:有n个房间,每个房间有若干个门和别的房间相连,管家从m房间开始走,要回到自己的住处(0),问是否有一条路可以走遍所有的门并且没有重复的路. 思路:判断是否存在欧拉通路,根据欧拉通路.欧拉回路的性质来做.有两种情况:一种是欧拉回路,所有房间的门的个数都是偶数个,并且此时初始房间不是0,此时存在要求的路径,如果初始是0则不行.另一种是欧拉通路,只有两个房间门是奇数个,剩下都是偶数个,并且这两个房间一个是0,一个是当前起点,并且

FZU 2112 并查集、欧拉通路

原题:http://acm.fzu.edu.cn/problem.php?pid=2112 首先是,票上没有提到的点是不需要去的. 然后我们先考虑这个图有几个联通分量,我们可以用一个并查集来维护,假设有n个联通分量,我们就需要n-1条边把他们连起来. 最后对于每个联通分量来说,我们要使它能一次走完,就是要求他是否满足欧拉通路,也就是这个联通分量中至多有2个度为奇数的点,每多出2个度为奇数的点,就多需要一条边(因为单个连通分量的所有点的度数之和为偶数,所以不可能存在奇数个奇数度数的点). 1 #i

hdu 1116 Play on Words(欧拉通路)

Problem Description Some of the secret doors contain a very interesting word puzzle. The team of archaeologists has to solve it to open that doors. Because there is no other way to open the doors, the puzzle is very important for us. There is a large