PCA(Principal Components Analysis)主成分分析

全是图片。。新手伤不起。word弄的,结果csdn传不了。。以后改。。

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-12-23 22:11:32

PCA(Principal Components Analysis)主成分分析的相关文章

A tutorial on Principal Components Analysis | 主成分分析(PCA)教程

A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components Analysis, February 26, 2002. 翻译:houchaoqun.时间:2017/01/18.出处:http://blog.csdn.net/houchaoqun_xmu  |  http://blog.csdn.net/Houchaoqun_XMU/article/details

PCA(principal component analysis)主成分分析法

<Aggregating local descriptors into a compact image representation>论文笔记 在论文中,提取到VLAD特征后,要对特征向量进行PCA降维,就是用一个大小为D' * D的矩阵M,对VLAD特征向量x做变换,降维后的vector是x' = Mx,x'的大小是D'维.矩阵M是由原样本的协方差矩阵的D'个特征向量构成. 为什么M要是特征向量的矩阵呢? 根据PRML中的内容,理解如下: 1,Maxinum Variance Formula

主成分分析(principal components analysis, PCA)

原理 计算方法 主要性质 有关统计量 主成分个数的选取 ------------------------------------------------------------------------------------------------------------------------ http://my.oschina.net/gujianhan/blog/225241 ---------------------------------------------------------

[zz] Principal Components Analysis (PCA) 主成分分析

http://matlabdatamining.blogspot.com/2010/02/principal-components-analysis.html 英文Principal Components Analysis的博客,写的挺好,担心以后打不开,全文转载. Principal Components Analysis Introduction Real-world data sets usually exhibit relationships among their variables.

Stat2&mdash;主成分分析(Principal components analysis)

最近在猛撸<R in nutshell>这本课,统计部分涉及的第一个分析数据的方法便是PCA!因此,今天打算好好梳理一下,涉及主城分析法的理论以及R实现!come on-gogogo- 首先说一个题外话,记得TED上有一期,一个叫Simon Sinek的年轻人提出了一个全新的Why-How-What黄金圈理论(三个同心圆,最里面的一个是Why,中间一层是How,最外面一层是What:一般人的思维习惯是从里面的圆逐渐推到外面,而创造了伟大作品.引领了伟大运动的人们,其思维习惯则恰恰相反,逆向思维

【转载】主成分分析(Principal components analysis)-最小平方误差解释

主成分分析(Principal components analysis)-最小平方误差解释 接上篇 3.2 最小平方误差理论 假设有这样的二维样本点(红色点),回顾我们前面探讨的是求一条直线,使得样本点投影到直线上的点的方差最大.本质是求直线,那么度量直线求的好不好,不仅仅只有方差最大化的方法.再回想我们最开始学习的线性回归等,目的也是求一个线性函数使得直线能够最佳拟合样本点,那么我们能不能认为最佳的直线就是回归后的直线呢?回归时我们的最小二乘法度量的是样本点到直线的坐标轴距离.比如这个问题中,

Andrew Ng机器学习公开课笔记&ndash;Principal Components Analysis (PCA)

网易公开课,第14课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Components Analysis (PCA), 比Factor Analysis更为直接,计算也简单些 主成分分析基于, 在现实中,对于高维的数据,其中有很多维都是扰动噪音,或有些维是冗余的,对描述数据特征没有作用 比如我们在描述汽车速度的时候,用不同的单位mph or kph作为两维,其实只需要其中一维即可

机器学习:Principal components analysis (主分量分析)

Principal components analysis 这一讲,我们简单介绍Principal Components Analysis(PCA),这个方法可以用来确定特征空间的子空间,用一种更加紧凑的方式(更少的维数)来表示原来的特征空间.假设我们有一组训练集{x(i);i=1,...m},含有m个训练样本,每一个训练样本x(i)∈Rn,其中(n?m),每一个n维的训练 样本意味着有n个属性,一般来说,这n个属性里面,会有很多是存在一定相关性的,也就是很多属性是冗余的,这就为特征的降维提供了

主成份分析(Principal Components Analysis)

因子分析是基于概率模型的基础上,利用EM算法的迭代,对参数进行估计.主成份分析(Principal Components Analysis, PCA)仅仅通过的线性变幻,用少数几个主分量来近似的表示所有的变量,以达到降低维度的目的. 一.  规范化(normalize) 规范化的目的是将不同尺度的数据化为同一尺度.规范化的步骤如下: (1)令 : (2)将所有替换为: (3)令: (4)将所有替换为. 其中,步骤(1)和步骤(2)将数据的均值转换为零:步骤(3)和步骤(4)使得数据都为单位方差,