RDD缓存

RDD的缓存

Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存数据集。当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。RDD相关的持久化和缓存是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键。

RDD缓存方式

RDD通过persist方法或cache方法可以将前面的计算结果缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的Action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。

/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)

/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def cache(): this.type = persist()

通过查看源码发现cache最终也是调用了persist方法,默认的存储级别是缓存在内存中,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。

object StorageLevel {
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(false, false, true, false)

  

class StorageLevel private(
private var _useDisk: Boolean,
private var _useMemory: Boolean,
private var _useOffHeap: Boolean,
private var _deserialized: Boolean,
private var _replication: Int = 1)

_useDisk: 是否使用硬盘
_useMemory: 是否使用内存
_useOffHeap: 内存不够存储是否使用硬盘
_deserialized: 是否反序列化
_replication: 存储副本,默认一个

缓存有可能丢失或者存储在内存中的数据由于内存不足而被删除,RDD的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重新计算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重新计算全部Partition。

时间: 2024-12-14 13:34:25

RDD缓存的相关文章

RDD缓存学习

首先实现rdd缓存 准备了500M的数据 10份,每份 100万条,存在hdfs 中通过sc.textFile方法读取 val rdd1 = sc.textFile("hdfs://mini1:9000/spark/input/visitlog").cache 在启动spark集群模式时分配内存2g,第一次分配1g 只缓存了40% 然后调用cache方法 rdd1.count 第二次调用rdd的count方法就显示出差距了

RDD缓存与检查点

RDD通过persist方法或cache方法可以将前面的计算结果缓存,默认情况下 persist() 会把数据以序列化的形式缓存在 JVM 的堆空间中. 但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD的计算结果将会被缓存在计算节点的内存中,并供后面重用. 示例如下: def main(args: Array[String]): Unit = { val sc: SparkContext = new SparkContext(new SparkConf(). setM

RDD的缓存,依赖,spark提交任务流程

1.RDD的缓存 Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存个数据集.当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用.这使得后续的动作变得更加迅速.RDD相关的持久化和缓存,是Spark最重要的特征之一.可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键. RDD缓存方式 RDD通过persist方法或cache方法可以将前面的计算结果缓存,但是并不是这两个方法被调用时立即缓存,而是触发

Spark 学习(四)RDD自定义分区和缓存

一,简介 二,自定义分区规则 2.1 普通的分组TopN实现 2.2 自定义分区规则TopN实现 三,RDD的缓存 3.1 RDD缓存简介 3.2 RDD缓存方式 正文 一,简介 在之前的文章中,我们知道RDD的有一个特征:就是一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度.用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值.默认值就是程序所分配到的CPU Core的数目.这个分配的规则我们是

sparkRDD:第4节 RDD的依赖关系;第5节 RDD的缓存机制;第6节 DAG的生成

4.      RDD的依赖关系 6.1      RDD的依赖 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 6.2      窄依赖 窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用 总结:窄依赖我们形象的比喻为独生子女.窄依赖不会产生shuffle,比如说:flatMap/map/filter.... 6.3      宽依赖 宽依赖指的是多个子RDD的Pa

Spark弹性分布式数据集RDD

RDD(Resilient Distributed Dataset)是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现.RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现.RDD必须是可序列化的.RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作.这对于迭代运算比

Spark缓存机制

虽然默认情况下 RDD 的内容是临时的,但 Spark 提供了在 RDD 中持久化数据的机制.第一次调用动作并计算出 RDD 内容后,RDD 的内容可以存储在集群的内存或磁盘上.这样下一次需要调用依赖该 RDD 的动作时,就不需要从依赖关系中重新计算 RDD,数据可以从缓存分区中直接返回: cached.cache()cached.count()cached.take(10) 在上述代码中, cache 方法调用指示在下次计算 RDD 后,要把 RDD 存储起来.调用count 会导致第一次计算

Spark编程模型及RDD操作

转载自:http://blog.csdn.net/liuwenbo0920/article/details/45243775 1. Spark中的基本概念 在Spark中,有下面的基本概念.Application:基于Spark的用户程序,包含了一个driver program和集群中多个executorDriver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver programExecutor:为某App

[Berkeley]弹性分布式数据集RDD的介绍(RDD: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 论文翻译)

摘要: 本文提出了分布式内存抽象的概念--弹性分布式数据集(RDD,Resilient Distributed Datasets).它同意开发者在大型集群上运行基于内存的计算.RDD适用于两种应用,而现有的数据流系统对这两种应用的处理并不高效:一是迭代式算法,这在图应用和机器学习领域非经常见.二是交互式数据挖掘工具.这两种情况下.将数据保存在内存中可以极大地提高性能.为了有效地实现容错,RDD提供了一种高度受限的共享内存,即RDD在共享状态的时候是基于粗粒度的转换而不是细粒度的更新(换句话说就是