维度表, 事实表, 数据仓库, BI...

以前一直对维度表, 事实表, 数据分析, BI等概念等有一些模糊. 这几天的学习终于让这些有了一些眉目了:

维度表示你要对数据进行分析时所的一个量, 比如你要分析产品销售情况, 你可以选择按类别来进行分析,或按区域来分析. 这样的按..分析就构成一个维度。前面的示例就可以有两个维度:类型和区域。另外每个维度还可以有子维度(称为属性),例如类别可以有子类型产品名等属性。下面是两个常见的维度表结构:

产品维度表:Prod_id, Product_Name, Category, Color, Size, Price 时间维度表:TimeKey, Season, Year, Month, Date

而事实表是数据聚合后依据某个维度生成的结果表。它的结构示例如下:

销售事实表:Prod_id(引用产品维度表), TimeKey(引用时间维度表), SalesAmount(销售总量,以货币计), Unit(销售量)

上面的这些表就是存在于数据仓库中的。从这里可以看出它有几个特点:

1. 维度表的冗余很大,主要是因为维度一般不大(相对于事实表来说的),而维度表的冗余可以使事实表节省很多空间。 2. 事实表一般都很大,如果以普通方式查询的话,得到结果一般发的时间都不是我们可以接受的。所以它一般要进行一些特殊处理。如SQL Server 2005就会对事实表进行如预生成处理等。 3. 维度表的主键一般都取整型值的标志列类型,这样也是为了节省事实表的存储空间。

时间: 2024-10-25 05:01:30

维度表, 事实表, 数据仓库, BI...的相关文章

数据仓库--事实表和维度表

本文主要参考如下几篇文章:http://www.cnblogs.com/47613593/archive/2009/02/20/1394581.htmlhttp://jackwxh.blog.51cto.com/2850597/827968 1.数据仓库与操作型数据库的区别 数据仓库的物理模型与常见的操作型数据库的物理模型有很大不同.最明显的区别是:操作型数据库主要是用来支撑即时操作,对数据库的性能和质量要求都比较高,为了防止"garbage in,garbage out",通常设计操

【转载】维度表和事实表的区别

免责声明:     本文转自网络文章,转载此文章仅为个人收藏,分享知识,如有侵权,请联系博主进行删除.     原文作者:知识点滴      原文地址: 维度表, 事实表, 数据仓库, BI...   以前一直对维度表, 事实表, 数据分析, BI等概念等有一些模糊. 这几天的学习终于让这些有了一些眉目了: 维度表示你要对数据进行分析时所用的一个量, 比如你要分析产品销售情况, 你可以选择按类别来进行分析,或按区域来分析. 这样的按..分析就构成一个维度.前面的示例就可以有两个维度:类型和区域.

《BI那点儿事—数据的艺术》理解维度数据仓库——事实表、维度表、聚合表

事实表 在多维数据仓库中,保存度量值的详细值或事实的表称为“事实表”.一个按照州.产品和月份划分的销售量和销售额存储的事实表有5个列,概念上与下面的示例类似. Sate Product Mouth Units Dollars WA Mountain-100 January 3 7.95 WA Cable Lock January 4 7.32 OR Mountain-100 January 3 7.95 OR Cable Lock January 4 7.32 WA Mountain-100 F

BI中事实表,维度表和数据集市,数据仓库的理解

维度表(dimension)存放着一些维度属性,例如时间维度:年月日时:地域维度:省份,城市:年龄维度:老年,中年,青年:职称维度:高,中,低.它定义了可以从哪些角度分析事实表. 事实表(fact)存放着一些业务产生的数据,例如:商品订购产生的订单信息,银行的流水信息,erp系统的办公信息.但它不仅存放着上述事实信息,而且存放在事实信息与维度信息关联的键值,例如订单信息里面有日期字段可以和时间维度关联,可以通过银行中的个税流水与收入维度关联量化各个收入群体,erp流水中的员工号可以同职称维度表关

转:BI中事实表和维度表的定义

  bi数据仓库产品数据库存储    一个典型的例子是,把逻辑业务比作一个立方体,产品维.时间维.地点维分别作为不同的坐标轴,而坐标轴的交点就是一个具体的事实.也就是说事实表是多个维度表的一个交点.而维度表是分析事实的一个窗口.         首先介绍下数据库结构中的星型结构,该结构在位于结构中心的单个事实数据表中维护数据,其它维度数据存储在维度表中.每个维度表与事实数据表直接相关,且通常通过一个键联接到事实数据表中.星型架构是数据仓库比较流向的一种架构.         事实表是数据仓库结构

BI中事实表和维度表的定义

一个典型的例子是,把逻辑业务比作一个立方体,产品维.时间维.地点维分别作为不同的坐标轴,而坐标轴的交点就是一个具体的事实.也就是说事实表是多个维度表的一个交点.而维度表是分析事实的一个窗口. 首先介绍下数据库结构中的星型结构,该结构在位于结构中心的单个事实数据表中维护数据,其它维度数据存储在维度表中.每个维度表与事实数据表直接相关,且通常通过一个键联接到事实数据表中.星型架构是数据仓库比较流向的一种架构. 事实表是数据仓库结构中的中央表,它包含联系事实与维度表的数字度量值和键.事实数据表包含描述

数据仓库展示模型 - 维度表与事实表的理解

一.事实表 特点: 1. 由一组表示维度的键和一组数字形式的度量值构成. 2. 维度外键通常是一些数字或字符代码,因为通常事实表会包含极大的数据量,如果直接使用维度描述的话,会对存储性能照成影响. 3. 每个度量值都是单独的一列,创建报表时(例如BIEE中数据透视表),度量值也可以作为维度来使用. 教工人数 单位ID(维度1) 学科码(维度2) 年度(维度3) 在编教工数(度量1) 在编教学科研人数(度量2) 1 0801 2013 101 89 2 0802 2013 102 77 3 070

数据仓库专题(4)-分布式数据仓库事实表设计思考---讨论精华

一.前言 上一篇分享博文<数据仓库专题(3)--分布式数据仓库事实表设计思考>后,陆续有各位兄弟参加大讨论,提出了各种问题,关于分布式环境下,维表和事实表设计,进行了比较深入的探讨,在此汇集整理,分享给大家.希望能有更多人参与尽力啊,共同探索分布式数据仓库数据模型的设计. 二.纪要 [活跃]北京-RTB-胖哥(1106110976) 10:21:36 分布式模式下事实表设计思考: 做大做强事实表,做小做弱维表: [冒泡]杭州-电子病历<[email protected]> 10:2

数据仓库专题(3)-分布式数据仓库事实表设计思考

一.前言 最近在设计数据仓库的数据逻辑模型,考虑到海量数据存储在分布式数据仓库中的技术架构模式,需要针对传统的面相关系型数据仓库的数据存储模型进行技术改造.设计出一套真正适合分布式数据仓库的数据存储模型. 二.事实表设计基础 事实表记录发生在现实世界中的操作型事件,其所产生的可度数值.事实表的设计完全依赖于物理活动,不受可能产生的最终报表的影响.事实表中,除数字度量外,事实表总是包含外键,用于关联与之相关的维度,也可以包含退化的维度键和日期/时间戳. 三.传统模式 以FS-LDM数据存储模型Ev