[IR课程笔记]概率检索模型

几个符号意义:

R:相关文档集

NR:不相关文档集

q:用户查询

dj:文档j

1/0风险情况

PRP(probability ranking principle):概率排序原理,利用概率模型来估计每篇文档和需求相关概率,然后对结果进行排序。

贝叶斯最优决策原理,基于最小损失风险作出决策,返回相关的可能性大于不相关的可能性的文档:

基于检索代价的概率排序原理:

crrP(R|D) + crnP(NR|D) < cnrP(R|D) + cnnP(NR|D)

如何计算概率

文档d可以表示为向量(d1,d2,...,dn

pi = P(di=1|R)       1-pi =  P(di=0|R)

qi = P(di=1|NR)     1-q=  P(di=0|NR)

对这个式子取对数:

如何得到初始的R和NR

pi=c     ,        c通常取0.5

qi=ni/N          ni表示有di出现的文档的个数,N表示整个文档集数量。

improve it:

对一个查询q,根据初始的R和NR,可以得到前k个返回结果。然后把这k个结果加入R集中。此时,概率计算方法为:

pi = P(di | R) = si / t

qi = P(di | NR) = (ni - si) / (N - t)

si表示的是t个文档中包含di的个数

平滑

pi  =  (si+0.5)/(t+1)

qi  =  ((ni - si+0.5) / (N - t+1))

加权

将上式的di换成wi.di表示词语di出现则为1,不出现则为0

BM25加权方法

时间: 2024-10-25 14:43:25

[IR课程笔记]概率检索模型的相关文章

这就是搜索引擎--读书笔记八--检索模型与搜索排序

检索模型与搜索排序 前言 搜索结果排序是搜索引擎最核心的构成部分,很大程度上决定了搜索引擎的质量好坏以及用户接受与否.尽管搜索引擎在实际结果排序时融合了上百种排序因子,但最重要的两个因素还是用户查询和网页的内容相关性及网页链接情况.那么,我们得到用户搜索词之后,如何从内容相关性的角度上对网页进行排序输出呢? 判断网页内容是否与用户查询相关,这依赖于搜索引擎所采用的检索模型.搜索引擎的核心是判断哪些文档是和用户需求相关的,并按照相关程度排序输出,所以相关程度计算是将用户查询和文档进行匹配的过程,而

概率检索模型回顾

布尔模型和向量空间模型可以给出文档内容和查询是否相关的非确定性的推测,而概率论的方法可以给这种推测提供一个基本的理论. 概率论基础知识 事件A发生的概率为P(A),它满足0≤P(A)≤1,对于两个事件A.B,它们的联合事件发生的可能性通过联合概率P(A,B)描述,条件概率P(A|B)表示在事件B发生的条件下A发生的概率.联合概率和条件概率的关系可以通过链式法则(Chain Rule)来体现: P(AB)=P(A∩B)=P(A|B)P(B)=P(B|A)P(A) 事件A 的补集的概率记为P(\ba

[IR课程笔记]向量空间模型(Vector Space Model)

VSM思想 把文档表示成R|v|上的向量,从而可以计算文档与文档之间的相似度(根据欧氏距离或者余弦夹角) 那么,如何将文档将文档表示为向量呢? 首先,需要选取基向量/dimensions,基向量须是线性独立的或者正交的向量. 在IR系统中,有两种方式决定基向量: 1.核心概念的思想(core concept):把词语的类型分类,按照其在不同分类上的“倾斜程度”决定向量的值.but,很难决定基向量. 2.把出现过的term(词语)都当作是一个基向量,假定所有的基向量都是相互正交相互独立的.以下我们

[IR课程笔记]Page Rank

主要目的: 在网络信息检索中,对每个文档的重要性作出评价. Basic Idea: 如果有许多网页链接到某一个网页,那么这个网页比较重要. 如果某个网页被一个权重较大的网页链接,那么这个网页比较重要. 随机游走模型: 过程:1.在所有网页中,随机选择一个网页作为游走的开端. 2.然后在当前网页上的超链接中,随机选择一个超链接跳转到下一个网页. 3.大量重复1.2的过程. 重要度计算方法: Pr(pi|p1)表示从编号为1的网页跳转到编号为i的网页的概率,其计算方式为 Pr(Pi|P1) = 1/

[IR课程笔记]Query Refinement and Relevance Feedback

相关反馈的两种类型: “真实”的相关反馈: 1. 系统返回结果 2. 用户提供一些反馈 3. 系统根据这些反馈,返回一些不同的,更好的结果 “假定”的相关反馈 1. 系统得到结果但是并不返回结果 2. 系统根据这些结果改善query 3. 根据改善后的query得到结果并返回 Rocchio's Modified Query Modified query vector = Original query vector + Mean of relevant documents found by or

[IR课程笔记]统计语言模型

Basic idea 1.一个文档(document)只有一个主题(topic) 2.主题指的是这个主题下文档中词语是如何出现的 3.在某一主题下文档中经常出现的词语,这个词语在这个主题中也是经常出现的. 4.在某一主题下文档中不经常出现的词语,这个词语在这个主题中也是不经常出现的. 5.由此,概率计算方法可以近似为: Ranking 当给定查询q时,怎么根据统计语言模型进行排序呢?有三种排序方法,分别是:1.Query-likelihood 2.Document-likelihood 3.Di

[IR课程笔记]Hyperlink-Induced Topic Search(HITS)

两个假设 1. 好的hub pages: 好的对某个主题的hub pages 链接许多好的这个主题的authoritative pages. 2. 好的authoritative pages: 好的对某个主题的authoritative pages 被许多好的这个主题的hub pages链接. 注:循环定义 算法过程: 1.找出root set :用户输入一个query,根据query中的term,在文档集中找出包含至少一个term的的文档,使他们构成root set. 2. 找出base se

操作系统学习笔记----进程/线程模型----Coursera课程笔记

操作系统学习笔记----进程/线程模型----Coursera课程笔记 进程/线程模型 0. 概述 0.1 进程模型 多道程序设计 进程的概念.进程控制块 进程状态及转换.进程队列 进程控制----进程创建.撤销.阻塞.唤醒.... 0.2 线程模型 为什么引入线程 线程的组成 线程机制的实现 用户级线程.核心级线程.混合方式 1. 进程的基本概念 1.1 多道程序设计 允许多个程序同时进入内存运行,目的是为了提高CPU系统效率 1.2 并发环境与并发程序 并发环境: 一段时间间隔内,单处理器上

搜索引擎的检索模型-查询与文档的相关度计算

1. 检索模型概述 搜索结果排序时搜索引擎最核心的部分,很大程度度上决定了搜索引擎的质量好坏及用户满意度.实际搜索结果排序的因子有很多,但最主要的两个因素是用户查询和网页内容的相关度,以及网页链接情况.这里我们主要总结网页内容和用户查询相关的内容. 判断网页内容是否与用户査询相关,这依赖于搜索引擎所来用的检索模型.检索模型是搜索引擎的理论基础,为量化相关性提供了一种数学模型,是对查询词和文档之间进行相似度计算的框架和方法.其本质就是相关度建模.如图所示,检索模型所在搜索引擎系统架构位置: 当然检