spark集群部署错误告警随记

1,Error: Could not find or load main class namenode-format

这个是错误的把hadoop namenode -format 命令写成hadoop namenode-format

2,  WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

在/etc/profile中加上这两句

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib:$HADOOP_COMMON_LIB_NATIVE_DIR"

时间: 2024-12-13 20:13:39

spark集群部署错误告警随记的相关文章

Hadoop记录-Apache hadoop+spark集群部署

Hadoop+Spark集群部署指南 (多节点文件分发.集群操作建议salt/ansible) 1.集群规划节点名称 主机名 IP地址 操作系统Master centos1 192.168.0.1 CentOS 7.2Slave1 centos2 192.168.0.2 CentOS 7.2Slave2 centos2 192.168.0.3 Centos 7.22.基础环境配置2.1 hostname配置1)修改主机名在192.168.0.1 root用户下执行:hostnamectl set

Spark 集群部署

本文将接受 Spark 集群的部署方式,包括无 HA.Spark Standalone HA 和 基于 ZooKeeper 的 HA 三种. 环境:CentOS6.6 . JDK1.7.0_80 . 关闭防火墙 . 配置好 hosts 和 SSH 免密码.Spark1.5.0 一. 无 HA 方式 1. 主机名与角色的对应关系: node1.zhch    Master node2.zhch    Slave node3.zhch    Slave 2. 解压 Spark 部署包(可以从官网直接

Spark集群部署以及应用

一.环境概述: 192.168.1.2 master 192.168.1.3 worker 192.168.1.4 worker 二.Scala环境设置 [[email protected] ~]# tar zxvf scala-2.10.4.tgz -C /home/hadoop/ [[email protected] ~]# cd /home/hadoop/ [[email protected] hadoop]# ln -s scala-2.10.4 scala [[email protec

spark集群与spark HA高可用快速部署 spark研习第一季

1.spark 部署 标签: spark 0 apache spark项目架构 spark SQL -- spark streaming -- MLlib -- GraphX 0.1 hadoop快速搭建,主要利用hdfs存储框架 下载hadoop-2.6.0,解压,到etc/hadoop/目录下 0.2 快速配置文件 cat core-site.xml <configuration> <property> <name>fs.defaultFS</name>

使用docker安装部署Spark集群来训练CNN(含Python实例)

使用docker安装部署Spark集群来训练CNN(含Python实例) 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 博客虽水,然亦博主之苦劳也. 如需转载,请附上本文链接,不甚感激! http://blog.csdn.net/cyh_24/article/details/49683221 实验室有4台神服务器,每台有8个tesla-GPU,然而平时做实验都只使用了其中的一个GPU,实在暴遣天物! 于是想用spark来把这些GPU都利用起来.听闻d

【Spark01】SparkSubmit兼谈Spark集群管理和部署模式

关于Cluster Manager和Deploy Mode的组合在SparkSubmit.scala的createLaunchEnv中有比较详细的逻辑. Cluster Manager基本上有Standalone,YARN和Mesos三种情况,说明Cluster Manager用来指明集群的资源管理器.这就是说不管是Client还是Cluster部署方式(deployMode的两种可能),都会使用它们做集 群管理器,也就是说Client也是一种集群部署方式??? /** * @return a

在Docker中从头部署自己的Spark集群

由于自己的电脑配置普普通通,在VM虚拟机中搭建的集群规模也就是6个节点左右,再多就会卡的不行 碰巧接触了Docker这种轻量级的容器虚拟化技术,理论上在普通PC机上搭建的集群规模可以达到很高(具体能有多少个也没有实际测试过) 于是就准备在Docker上搭建Spark集群 由于是Docker新手,在操作过程中遇到了不少麻烦 刚开始在网上找的资料都是直接从DockerHub上拉取别人已经建好的镜像使用 问题多多,下载速度慢,下载异常,运行异常,配置异常等等等等... 好不容易下载了一个可以用的镜像,

将java开发的wordcount程序部署到spark集群上运行

1 package cn.spark.study.core; 2 3 import java.util.Arrays; 4 5 import org.apache.spark.SparkConf; 6 import org.apache.spark.api.java.JavaPairRDD; 7 import org.apache.spark.api.java.JavaRDD; 8 import org.apache.spark.api.java.JavaSparkContext; 9 impo

Hadoop2.2集群安装配置-Spark集群安装部署

配置安装Hadoop2.2.0 部署spark 1.0的流程 一.环境描写叙述 本实验在一台Windows7-64下安装Vmware.在Vmware里安装两虚拟机分别例如以下 主机名spark1(192.168.232.147),RHEL6.2-64 操作系统,usernameRoot 从机名spark2(192.168.232.152).RHEL6.2-64 操作系统,usernameRoot 二.环境准备 1.防火墙禁用.SSH服务设置为开机启动.并关闭SELINUX 2.改动hosts文件