BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

描述



http://www.lydsy.com/JudgeOnline/problem.php?id=1004

共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的染色方案视为等价的,求等价类计数.

分析



给出置换求等价类计数,用Burnside引理:等价类计数=(每一个置换不动点的和)/置换数.(不知道的建议去看白书)

其中不动点是指一个染色方案经过置换以后染色与之前完全相同.

1.求不动点个数.

不动点的话同一个循环内的每一个点的颜色必须相同(否则不同颜色交界的地方置换以后颜色就与之前不同了).用f[r][b][g]表示R选了r个,B选了b个,G选了g个的方案数.f[0][0][0]=1.转移方程比较简单,类似背包.

2.除法取余.

要用到乘法逆元.逆元的定义类似将倒数的定义推广了.a模p的逆元记作a^-1. aa^-1=1(mod p).然后在除法的时候用乘逆元来代替除法.

逆元的求法可以用exgcd,也可以用费马小定理.

费马小定理:两个互质的数a,b,a模b的逆元为a^(b-2).用快速幂就好了.

p.s.

1.iwtwiioi神犇的代码真是简短...

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3
 4 const int maxn=60+5;
 5 int n,m,sr,sb,sg,p,ans;
 6 int a[maxn],s[maxn];
 7 int f[21][21][21];
 8 bool vis[maxn];
 9 int qpow(int a,int b){
10     int ret=1;
11     for(;b;a=(a*a)%p,b>>=1) if(b&1) ret=(ret*a)%p;
12     return ret;
13 }
14 int get(){
15     int cnt=0; memset(f,0,sizeof f); memset(s,0,sizeof s); memset(vis,false, sizeof vis);
16     for(int i=1;i<=n;i++)if(!vis[i]){ cnt++; for(int j=i;!vis[j];j=a[j]) vis[j]=true, s[cnt]++; }
17     f[0][0][0]=1;
18     for(int i=1;i<=cnt;i++)for(int r=sr;r>=0;r--)for(int b=sb;b>=0;b--)for(int g=sg;g>=0;g--){
19         if(r>=s[i]) f[r][b][g]=(f[r][b][g]+f[r-s[i]][b][g])%p;
20         if(b>=s[i]) f[r][b][g]=(f[r][b][g]+f[r][b-s[i]][g])%p;
21         if(g>=s[i]) f[r][b][g]=(f[r][b][g]+f[r][b][g-s[i]])%p;
22     }
23     return f[sr][sb][sg];
24 }
25 int main(){
26     scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&p);
27     n=sr+sb+sg;
28     for(int i=1;i<=m;i++){ for(int j=1;j<=n;j++) scanf("%d",&a[j]); ans=(ans+get())%p; }
29     for(int i=1;i<=n;i++) a[i]=i; ans=(ans+get())%p;
30     ans=(ans*qpow(m+1,p-2))%p;
31     printf("%d\n",ans);
32     return 0;
33 }

1004: [HNOI2008]Cards

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2820  Solved: 1687
[Submit][Status][Discuss]

Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG

和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

Source

时间: 2024-10-13 00:25:48

BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)的相关文章

hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 10383    Accepted Submission(s): 8302 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Input 数据的第一行是一个

CodeForces 300C Beautiful Numbers(乘法逆元/费马小定理+组合数公式+快速幂)

C. Beautiful Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Vitaly is a very weird man. He's got two favorite digits a and b. Vitaly calls a positive integer good, if the decimal

UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)

题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m 与后面的讨论分离.从m 种颜色中取出k 种颜色涂色,取色部分有C(m, k) 种情况: 然后通过尝试可以发现,第一个有k种选择,第二个因不能与第一个相同,只有(k-1) 种选择,第三个也只需与第二个不同,也有(k-1) 种选择.总的情况数为k ×(k-1)^(n-1).但这仅保证了相邻颜色不同,总

【费马小定理+快速幂+逆元】BZOJ3240-[NOI2013]矩阵游戏

[题目大意] 若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式:F[1][1]=1F[i,j]=a*F[i][j-1]+b (j!=1)①F[i,1]=c*F[i-1][m]+d (i!=1)②递推式中a,b,c,d都是给定的常数.求F[n][m]. [思路] 磨了一个早上,然而UOJ上的额外数据还没有过去..BZOJ上已AC先放上来,后续慢慢磨…… *还有一点,最后输出答案的时候要先+MOD再%MOD. *MOD要勤快一点,不然会爆. 1 #include<i

51nod A 魔法部落(逆元费马小定理)

A 魔法部落 小Biu所在的部落是一个魔法部落,部落中一共有n+1个人,小Biu是魔法部落中最菜的,所以他的魔力值为1,魔法部落中n个人的魔法值都不相同,第一个人的魔法值是小Biu的3倍,第二个人的魔法值是第一个人的3倍,以此类推. 现在小Biu想知道整个部落的魔法值和是多少?由于答案比较大,请把答案对1e9+7取模之后输出. 收起 输入 输入一个数N(0 <= N <= 10^9) 输出 输出:整个部落的魔法值和模1e9+7. 数据范围 对于20%的数据,n<=100: 对于40%的数

[CodeVs1515]跳(lucas定理+费马小定理+乘法逆元)

嘿嘿嘿好久没写数学题了,偶尔看到一道写一写... 题目大意:一个(n+1)*(m+1)[0<=n, m<=10^12,n*m<=10^12]的矩阵,C(0,0)=1,C(x,y)=C(x-1,y)+C(x,y-1),求从0,0走到n,m路上最小权值(即为前面的C)和mod 10^9+7. 看到这个C(x,y)=C(x-1,y)+C(x,y-1),第一反应就是杨辉三角,所以这个矩阵其实就是一个由组合数组成的矩阵,第i行第j列的权值为C(i+j,j)[注意这个矩形起点是(0,0)]. 我们可

【日常学习】乘法逆元&amp;&amp;欧拉定理&amp;&amp;费马小定理&amp;&amp;欧拉函数应用&amp;&amp;常大学霸

转载请注明出处 [ametake版权所有]http://blog.csdn.net/ametake欢迎来看看 今天花了一个多小时终于把乘法逆元捣鼓明白了 鉴于我拙计的智商抓紧把这些记录下来 在此本栏目鸣谢里奥姑娘和热心网友himdd的帮助和支持 那么正文开始··· 逆元是干什么的呢? 因为(a/b)mod p ≠(a mod p)/(b mod p) 我们需要想一种方法避免高精 那就是把除法转化为乘法 因为(a*b) mod p = ( a mod p ) *( b mod p ) 怎么转化呢?

费马小定理 求乘法逆元

//P3811 [模板]乘法逆元 #include<bits/stdc++.h> using namespace std; inline void write(long long X) { if(X<0) {X=~(X-1); putchar('-');} if(X>9) write(X/10); putchar(X%10+'0'); } long long qpow(long long n,long long m,long long mod) { long long ans=1;

HDU - 1576(费马小定理求逆元)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9278    Accepted Submission(s): 7452 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%99