import jiebaimport numpy as np #打开词典文件,返回列表def open_dict(Dict = ‘mini‘, path=r‘/Users/apple888/PycharmProjects/Textming/Sent_Dict/Hownet/‘): path = path + ‘%s.txt‘ % Dict dictionary = open(path, ‘r‘, encoding=‘utf-8‘) dict = [] for word in dictionary: word = word.strip(‘\n‘) dict.append(word) return dict def judgeodd(num): if (num % 2) == 0: return ‘even‘ else: return ‘odd‘ #注意,这里你要修改path路径。deny_word = open_dict(Dict = ‘否定词‘, path= r‘C:/Users/Administrator/Desktop/Textming/‘)posdict = open_dict(Dict = ‘positive‘, path= r‘C:/Users/Administrator/Desktop/Textming/‘)negdict = open_dict(Dict = ‘negative‘, path= r‘C:/Users/Administrator/Desktop/Textming/‘) degree_word = open_dict(Dict = ‘程度级别词语‘, path= r‘C:/Users/Administrator/Desktop/Textming/‘)mostdict = degree_word[degree_word.index(‘extreme‘)+1 : degree_word.index(‘very‘)]#权重4,即在情感词前乘以4verydict = degree_word[degree_word.index(‘very‘)+1 : degree_word.index(‘more‘)]#权重3moredict = degree_word[degree_word.index(‘more‘)+1 : degree_word.index(‘ish‘)]#权重2ishdict = degree_word[degree_word.index(‘ish‘)+1 : degree_word.index(‘last‘)]#权重0.5 def sentiment_score_list(dataset): seg_sentence = dataset.split(‘。‘) for item in seg_sentence: item.split(‘,‘) count1 = [] count2 = [] for sen in seg_sentence: #循环遍历每一个评论 segtmp = jieba.lcut(sen, cut_all=False) #把句子进行分词,以列表的形式返回 i = 0 #记录扫描到的词的位置 a = 0 #记录情感词的位置 poscount = 0 #积极词的第一次分值 sinsitive_count1=0 sinsitive_count2 = 0 poscount2 = 0 #积极词反转后的分值 poscount3 = 0 #积极词的最后分值(包括叹号的分值) negcount = 0 negcount2 = 0 negcount3 = 0 for word in segtmp: if word in posdict: # 判断词语是否是情感词 poscount += 1 sinsitive_count1+=1 c = 0 for w in segtmp[a:i]: # 扫描情感词前的程度词 if w in mostdict: poscount *= 4.0 elif w in verydict: poscount *= 3.0 elif w in moredict: poscount *= 2.0 elif w in ishdict: poscount *= 0.5 elif w in deny_word: c += 1 if judgeodd(c) == ‘odd‘: # 扫描情感词前的否定词数 poscount *= -1.0 poscount2 += poscount poscount = 0 poscount3 = poscount + poscount2 + poscount3 poscount2 = 0 else: poscount3 = poscount + poscount2 + poscount3 poscount = 0 a = i + 1 # 情感词的位置变化 elif word in negdict: # 消极情感的分析,与上面一致 negcount += 1 sinsitive_count2+=1 d = 0 for w in segtmp[a:i]: if w in mostdict: negcount *= 4.0 elif w in verydict: negcount *= 3.0 elif w in moredict: negcount *= 2.0 elif w in ishdict: negcount *= 0.5 elif w in degree_word: d += 1 if judgeodd(d) == ‘odd‘: negcount *= -1.0 negcount2 += negcount negcount = 0 negcount3 = negcount + negcount2 + negcount3 negcount2 = 0 else: negcount3 = negcount + negcount2 + negcount3 negcount = 0 a = i + 1 elif word == ‘!‘ or word == ‘!‘: ##判断句子是否有感叹号 for w2 in segtmp[::-1]: # 扫描感叹号前的情感词,发现后权值+2,然后退出循环 if w2 in posdict or negdict: poscount3 += 2 negcount3 += 2 sinsitive_count1+=1 sinsitive_count2+=1 break i += 1 # 扫描词位置前移 # 以下是防止出现负数的情况 pos_count = 0 neg_count = 0 if poscount3 < 0 and negcount3 > 0: neg_count += negcount3 - poscount3 pos_count = 0 elif negcount3 < 0 and poscount3 > 0: pos_count = poscount3 - negcount3 neg_count = 0 elif poscount3 < 0 and negcount3 < 0: neg_count = -poscount3 pos_count = -negcount3 else: pos_count = poscount3 neg_count = negcount3 count1.append([pos_count, neg_count]) count2.append(count1) count1 = [] return count2 def sentiment_score(senti_score_list): score = [] for review in senti_score_list: score_array = np.array(review) print(score_array) Pos = np.sum(score_array[:, 0]) Neg = np.sum(score_array[:, 1]) AvgPos = np.mean(score_array[:, 0]) AvgPos = float(‘%.1f‘%AvgPos) AvgNeg = np.mean(score_array[:, 1]) AvgNeg = float(‘%.1f‘%AvgNeg) StdPos = np.std(score_array[:, 0]) StdPos = float(‘%.1f‘%StdPos) StdNeg = np.std(score_array[:, 1]) StdNeg = float(‘%.1f‘%StdNeg) score.append([Pos, Neg, AvgPos, AvgNeg, StdPos, StdNeg]) return score data = ‘你就是坑人的,什么玩意!你们的手机真不好用!非常生气,我非常郁闷!!!!‘data2= ‘我好开心啊,非常非常非常高兴!今天我得了一百分,我很兴奋开心,愉快,开心‘print(sentiment_score(sentiment_score_list(data)))print(sentiment_score(sentiment_score_list(data2)))
原文地址:https://www.cnblogs.com/rabbittail/p/8336291.html
时间: 2024-10-11 05:14:05