leetcode 491. 递增子序列

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:

输入: [4, 6, 7, 7]
输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:

  1. 给定数组的长度不会超过15。
  2. 数组中的整数范围是 [-100,100]。
  3. 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。

这种算法的复杂度O(n^2)

通过dfs的方法找到第i位数右边所有比它大的数,压并且压到sbuseq中,当subseq的长度大于1的时候就把它压到ans中。这样就能找到所有递增的子序列, 但是可能会出现重复的情况;

比如上面的[4,6,7,7]通过dfs的方法就会出现两个[4,6,7]的子序列,这里用unorder_set来保存subseq的最后一个元素,当新来的元素和set的最后一个元素相等的时候,就不压入subseq。这样就能避免重复子序列的出现

 1 #include<algorithm>
 2 #include<stack>
 3 class Solution {
 4 public:
 5     void dfs(vector<vector<int>>& ans, vector<int>& subseq, vector<int> nums, int pos){
 6         if(subseq.size()>1) ans.push_back(subseq);
 7         unordered_set<int> hash;
 8         for(int i=pos; i<nums.size(); i++){
 9         if((subseq.empty() || subseq.back()<=nums[i]) && hash.find(nums[i])==hash.end()){
10             subseq.push_back(nums[i]);
11             dfs(ans, subseq, nums, i+1);
12             subseq.pop_back();
13             hash.insert(nums[i]);
14         }
15       }
16     }
17
18     vector<vector<int>> findSubsequences(vector<int>& nums) {
19         vector<vector<int>> ans;
20         vector<int> subseq;
21         dfs(ans, subseq, nums, 0);
22         return ans;
23     }
24 };

其实拿到题,知道思路,就是不能联想到怎么实现,对递归的使用还是不熟练,多多积累吧

原文地址:https://www.cnblogs.com/mr-stn/p/9031491.html

时间: 2024-10-03 21:09:53

leetcode 491. 递增子序列的相关文章

491 Increasing Subsequences 递增子序列

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2.示例:输入: [4, 6, 7, 7]输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]说明:    1.给定数组的长度不会超过15.    2.数组中的整数范围是 [-100,100].    3.给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况.详见:https://leetcode.c

LeetCode:递增的三元子序列【334】

LeetCode:递增的三元子序列[334] 题目描述 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n-1,使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false . 说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1) . 示例 1: 输入: [1,2,3,4,5] 输出: true 示例 2: 输入:

leetcode 673. 最长递增子序列的个数 java

题目: 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7]输出: 2解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7].示例 2: 输入: [2,2,2,2,2]输出: 5解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5.注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数. 解题: 方法:动态规划 假设对于以 nums[i] 结尾的序列,我们知道最长序列的长度 le

leetcode最长递增子序列问题

题目描写叙述: 给定一个数组,删除最少的元素,保证剩下的元素是递增有序的. 分析: 题目的意思是删除最少的元素.保证剩下的元素是递增有序的,事实上换一种方式想,就是寻找最长的递增有序序列.解法有非常多种,这里考虑用动态规划实现. 开辟一个额外的一维数组dp[]用来记录以每一个元素为结尾的最长子序列的长度.当然.还须要一个哈希表,用来保存最长子序列的元素.dp[i]表示以数组A[i]为结尾的最长子序列的长度.则不难得到例如以下的公式: 然后通过回溯哈希表把须要删除的元素删除就可以. <span s

Leetcode 673.最长递增子序列的个数

最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]. 示例 2: 输入: [2,2,2,2,2] 输出: 5 解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5. 注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数. 思路 定义 dp(n,1) cnt (n,1) 这里我用dp[i]

LeetCode 673. Number of Longest Increasing Subsequence 最长递增子序列的个数 (C++/Java)

题目: Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: Input: [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7]. Example 2: Input: [2,2,2,2,2] O

最长公共子序列|最长公共子串|最长重复子串|最长不重复子串|最长回文子串|最长递增子序列|最大子数组和

参考:http://www.ahathinking.com/archives/124.html 最长公共子序列 1.动态规划解决过程 1)描述一个最长公共子序列 如果序列比较短,可以采用蛮力法枚举出X的所有子序列,然后检查是否是Y的子序列,并记录所发现的最长子序列.如果序列比较长,这种方法需要指数级时间,不切实际. LCS的最优子结构定理:设X={x1,x2,……,xm}和Y={y1,y2,……,yn}为两个序列,并设Z={z1.z2.……,zk}为X和Y的任意一个LCS,则: (1)如果xm=

动态规划之最长递增子序列

题目一:给定一个长度为N的数组,找出一个最长的单调递增子序列(不一定连续,但是顺序不能乱).并返回单调递增子序列的长度. 例如:给定一个长度为8的数组A{1,3,5,2,4,6,7,8},则其最长的单调递增子序列为{1,2,4,6,7,8},我们返回其长度6. 题目二:在题目一的基础上,我们要返回该子序列中的元素.例如,给定一个长度为8的数组A{1,3,5,2,4,6,7,8},我们返回的是单调递增子序列{1,2,4,6,7,8}. 解析:我们使用动态规划的思想来解决此问题,假设给定的数组为nu

HDU 3998 Sequence (最长递增子序列+最大流SAP,拆点法)经典

Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1666    Accepted Submission(s): 614 Problem Description There is a sequence X (i.e. x[1], x[2], ..., x[n]). We define increasing subsequ