hadoop使用场景

    • 大数据量存储:分布式存储
    • 日志处理: Hadoop擅长这个
    • 海量计算: 并行计算
    • ETL:数据抽取到oracle、mysql、DB2、mongdb及主流数据库
    • 使用HBase做数据分析: 用扩展性应对大量的写操作—Facebook构建了基于HBase的实时数据分析系统
    • 机器学习: 比如Apache Mahout项目
    • 搜索引擎:hadoop + lucene实现
    • 数据挖掘:目前比较流行的广告推荐
    • 大量地从文件中顺序读。HDFS对顺序读进行了优化,代价是对于随机的访问负载较高。
    • 数据支持一次写入,多次读取。对于已经形成的数据的更新不支持。
    • 数据不进行本地缓存(文件很大,且顺序读没有局部性)
    • 任何一台服务器都有可能失效,需要通过大量的数据复制使得性能不会受到大的影响。
    • 用户细分特征建模
    • 个性化广告推荐
    • 智能仪器推荐
    • hadoop是什么?
      (1)Hadoop是一个开源的框架,可编写和运行分布式应用处理大规模数据,是专为离线和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式。Hadoop=HDFS(文件系统,数据存储技术相关)+ Mapreduce(数据处理),Hadoop的数据来源可以是任何形式,在处理半结构化和非结构化数据上与关系型数据库相比有更好的性能,具有更灵活的处理能力,不管任何数据形式最终会转化为key/value,key/value是基本数据单元。用函数式变成Mapreduce代替SQL,SQL是查询语句,而Mapreduce则是使用脚本和代码,而对于适用于关系型数据库,习惯SQL的Hadoop有开源工具hive代替。
      (2)Hadoop就是一个分布式计算的解决方案.

      hadoop能做什么?

      hadoop擅长日志分析,facebook就用Hive来进行日志分析,2009年时facebook就有非编程人员的30%的人使用HiveQL进行数据分析;淘宝搜索中    的 自定义筛选也使用的Hive;利用Pig还可以做高级的数据处理,包括Twitter、LinkedIn 上用于发现您可能认识的人,可以实现类似Amazon.com的协同过滤的推荐效果。淘宝的商品推荐也是!在Yahoo!的40%的Hadoop作业是用pig运行的,包括垃圾邮件的识别和过滤,还有用户特征建模。(2012年8月25新更新,天猫的推荐系统是hive,少量尝试mahout!)

      下面举例说明:

      设想一下这样的应用场景. 我有一个100M 的数据库备份的sql 文件.我现在想在不导入到数据库的情况下直接用grep操作通过正则过滤出我想要的内容。例如:某个表中 含有相同关键字的记录那么有几种方式,一种是直接用linux的命令 grep 还有一种就是通过编程来读取文件,然后对每行数据进行正则匹配得到结果好了 现在是100M 的数据库备份.上述两种方法都可以轻松应对.
      那么如果是1G , 1T 甚至 1PB 的数据呢 ,上面2种方法还能行得通吗? 答案是不能.毕竟单台服务器的性能总有其上限.那么对于这种 超大数据文件怎么得到我们想要的结果呢?
      有种方法 就是分布式计算, 分布式计算的核心就在于 利用分布式算法 把运行在单台机器上的程序扩展到多台机器上并行运行.从而使数据处理能力成倍增加.但是这种分布式计算一般对编程人员要求很高,而且对服务器也有要求.导致了成本变得非常高.
      Haddop 就是为了解决这个问题诞生的.Haddop 可以很轻易的把 很多linux的廉价pc 组成 分布式结点,然后编程人员也不需要知道分布式算法之类,只需要根据mapreduce的规则定义好接口方法,剩下的就交给Haddop. 它会自动把相关的计算分布到各个结点上去,然后得出结果.
      例如上述的例子 : Hadoop 要做的事 首先把 1PB的数据文件导入到 HDFS中, 然后编程人员定义好 map和reduce, 也就是把文件的行定义为key,每行的内容定义为value , 然后进行正则匹配,匹配成功则把结果 通过reduce聚合起来返回.Hadoop 就会把这个程序分布到N 个结点去并行的操作.
      那么原本可能需要计算好几天,在有了足够多的结点之后就可以把时间缩小到几小时之内.

      这也就是所谓的 大数据 云计算了.如果还是不懂的话再举个简单的例子
      比如  1亿个  1 相加 得出计算结果, 我们很轻易知道结果是 1亿.但是计算机不知道.那么单台计算机处理的方式做一个一亿次的循环每次结果+1
      那么分布式的处理方式则变成 我用 1万台 计算机,每个计算机只需要计算 1万个 1 相加 然后再有一台计算机把 1万台计算机得到的结果再相加
      从而得到最后的结果.
      理论上讲, 计算速度就提高了 1万倍. 当然上面可能是一个不恰当的例子.但所谓分布式,大数据,云计算 大抵也就是这么回事了.

      hadoop能为我司做什么?
      零数据基础,零数据平台,一切起点都是0。

      • 日志处理
      • 用户细分特征建模
      • 个性化广告推荐
      • 智能仪器推荐
      • 一切以增加企业的商业价值为核心目的、最终目的

      怎么用hadoop

        • hadoop的应用的在我司还属于研发型项目,拟用日志的分析来走通一次流程,因为此阶段目前来说还不需要数据挖掘的专业人员,在数据分析阶段即可,而系统有数据库工程师,Mapreduce有java开发工程师,而分析由我本人介入,而可视化暂时可由前端JS实现,本来我的调研方案,针对大数据的解决方案是hadoop+R的,但是对于R我们是完全不懂,在公司还没有大量投入人员的情况下,只有日志分析目前看来是最容易出成果的,也是可以通过较少人员能出一定成果的,所以选取了这个方向作为试点。
时间: 2024-11-04 23:38:12

hadoop使用场景的相关文章

hadoop应用场景

大数据量存储:分布式存储 日志处理: Hadoop擅长这个 海量计算: 并行计算 ETL:数据抽取到oracle.mysql.DB2.mongdb及主流数据库 使用HBase做数据分析: 用扩展性应对大量的写操作-Facebook构建了基于HBase的实时数据分析系统 机器学习: 比如Apache Mahout项目 搜索引擎:hadoop + lucene实现 数据挖掘:目前比较流行的广告推荐 大量地从文件中顺序读.HDFS对顺序读进行了优化,代价是对于随机的访问负载较高. 数据支持一次写入,多

[转载]Elasticsearch、MongoDB和Hadoop比较

IT界在过去几年中出现了一个有趣的现象.很多新的技术出现并立即拥抱了“大数据”.稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化.假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中.你可以使用这三种配置完成很多同养的事情. ES是否可以作为一个NoSQL数据库?粗看,这句话说的不太对,但是这是一个合理的场景.类似地,M

Hadoop集群搭建

关于SSH配置 在配置SSH的时候,要明白ssh_config主要负责ssh的客户端,sshd_config主要是负责服务器端配置:但是两者配置文件内容是一样的,处理方式是对于没有用的参数注释掉:其中有一项是PermitRootLogin,其实这一项是服务器端需要进行配置的,但我在ssh_config中打开了,导致了异常:Bad configuration option: PermitRootLogin:注释掉之后,问题解决. 另外,可以通过"man 5 sshd_config"来查看

Hadoop学习笔记系列文章导游【持续更新中...】

一.为何要学习Hadoop? 这是一个信息爆炸的时代.经过数十年的积累,很多企业都聚集了大量的数据.这些数据也是企业的核心财富之一,怎样从累积的数据里寻找价值,变废为宝炼数成金成为当务之急.但数据增长的速度往往比cpu和内存性能增长的速度还要快得多.要处理海量数据,如果求助于昂贵的专用主机甚至超级计算机,成本无疑很高,有时即使是保存数据,也需要面对高成本的问题,因为具有海量数据容量的存储设备,价格往往也是天文数字.成本和IT能力成为了海量数据分析的主要瓶颈. Hadoop这个开源产品的出现,打破

Hadoop虽然强大,但不是万能的(CSDN)

Hadoop很强大,但企业在使用Hadoop或者大数据之前,首先要明确自己的目标,再确定是否选对了工具,毕竟Hadoop不是万能的!本文中列举了几种不适合使用Hadoop的场景. 随着 Hadoop 应用的不断拓展,使很多人陷入了对它的盲目崇拜中,认为它能解决一切问题.虽然Hadoop是一个伟大的分布式大型数据计算的框架,但Hadoop不是万能的.比如在下面这几种场景就不适合使用Hadoop: 1.低延迟的数据访问 Hadoop并不适用于需要实时查询和低延迟的数据访问.数据库通过索引记录可以降低

各种数据处理方案(SQL,NoSQL,其他)的应用场景

综合stackoverflow和linkin上的相关讨论,还有我个人的工作经验: Redis应用场景(大部分场景下memcache可以用Redis代替,所以不单独讨论) 线上业务,读写的高性能要求 非海量数据(单机GB级别) 多机共享型操作,如session 支持事务(但并没有想像中的那么好用,逻辑上容易出问题) 优秀的原生数据结构 小型原子操作(如计数器) 不适用于N层结构的数据处理,或者说可以用于存储但是最好不要更新,以hash为例,包括redis实例(一个实例也等于是key-value字典

hadoop资料收集

大数据时代——为什么用hadoop hadoop应用场景 Hadoop一般用在哪些业务场景? Hadoop虽然强大,但不是万能的

如何低成本、高效率搭建Hadoop/Spark大数据处理平台

原文链接 随着人们逐渐认识到 "大数据"的价值,互联网.电商到金融业.政企等各行业开始处理海量数据.如何低成本.敏捷高效地搭建大数据处理平台,成为影响大数据创新效率的关键. 为了让用户以最简便地方式享用阿里云全球资源,在云端构建敏捷弹性.高可靠和高性价比的大数据平台,近日,阿里云在成都云栖大会上发布了一款Hadoop/Spark场景专用的ECS存储优化型实例D1规格族,单实例提供最高56核CPU,224GB内存,168TB本地盘容量,5GB/S总吞吐,PPS达120万+.这对Hadoo

Hadoop 调研笔记

由于从各光伏电站采集的数据量较大,必须解决海量数据的查询.分析的问题.目前主要考虑两种方式:1.  Hadoop大数据技术:2.  Oracle(数据仓库)+BI:    本文仅介绍hadoop的技术要应用特征. Hadoop 基本介绍 hadoop是一个平台,是一个适合大数据的分布式存储和计算的平台.什么是分布式存储?这就是后边我们要讲的hadoop核心之一HDFS(Hadoop Distributed File System):什么是分布式计算?这是我们后边要讲的hadoop另外一个重要的核