spark MLlib的 pipeline方式

spark mllib的pipeline,是指将多个机器学习的算法串联到一个工作链中,依次执行各种算法。

在Pipeline中的每个算法被称为“PipelineStage”,表示其中的一个算法。PipelineStage分为两种类型,Estimator和Transformer,其中:

  • Transformer将数据转换为两一种形式(例如修改格式),以供后续的Estimator使用,统一的转换函数transform;
  • Estimator是由数据得到一个Mode(Mode也是继承于Transformer),有统一触发的函数fit。

然后一个“综合”的算法就可以通过pipeline封装起来。这样做的好处是可以很方便的替换算法。例如,我们在应用中往往只是笼统的期望一个“分类”、”拟合“这样的功能,但不知道是用分类或拟合的那个算法效果是最好的,有了这种pipeline机制后,很方便替换各种分类和拟合算法,从而得到最好的效果。

详情: https://spark.apache.org/docs/latest/ml-guide.html

/** * :: Experimental :: * A simple pipeline, which acts as an estimator. A Pipeline consists of a sequence of stages, each * of which is either an [[Estimator]] or a [[Transformer]]. When [[Pipeline#fit]] is called, the * stages are executed in order. If a stage is an [[Estimator]], its [[Estimator#fit]] method will * be called on the input dataset to fit a model. Then the model, which is a transformer, will be * used to transform the dataset as the input to the next stage. If a stage is a [[Transformer]], * its [[Transformer#transform]] method will be called to produce the dataset for the next stage. * The fitted model from a [[Pipeline]] is an [[PipelineModel]], which consists of fitted models and * transformers, corresponding to the pipeline stages. If there are no stages, the pipeline acts as * an identity transformer. */@Experimentalclass Pipeline(override val uid: String) extends Estimator[PipelineModel] {

From WizNote

时间: 2024-12-13 07:00:48

spark MLlib的 pipeline方式的相关文章

使用 Spark MLlib 做 K-means 聚类分析[转]

原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Learning),相信很多计算机从业者都会对这个技术方向感到兴奋.然而学习并使用机器学习算法来处理数据却是一项复杂的工作,需要充足的知识储备,如概率论,数理统计,数值逼近,最优化理论等.机器学习旨在使计算机具有人类一样的学习能力和模仿能力,这也是实现人工智能的核心思想和方法.传统的机器学习算法,由于技术和

梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)

梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details/53426350 梯度迭代树 算法简介: 梯度提升树是一种决策树的集成算法.它通过反复迭代训练决策树来最小化损失函数.决策树类似,梯度提升树具有可处理类别特征.易扩展到多分类问题.不需特征缩放等性质.Spark.ml通过使用现有decision tree工具来实现. 梯度提升树依次迭代训练一系列的

Spark MLlib中分类和回归算法

Spark MLlib中分类和回归算法: -分类算法: pyspark.mllib.classification -朴素贝叶斯 NaiveBayes -支持向量机(优化:随机梯度下降)SVMWithSGD -逻辑回归  LogisticRegressionWithSGD // 从Spark 2.0开始,官方推荐使用BFGS方式优化LR算法 LogisticRegressionWithBFGS // 针对流式数据实时模型训练算法 StreamingLogisticRegressionWithSGD

【spark】spark应用(分布式估算圆周率+基于Spark MLlib的贷款风险预测)

一.分布式估算圆周率 计算原理:假设正方形的面积S等于x²,而正方形的内切圆的面积C等于Pi×(x/2)²,因此圆面积与正方形面积之比C/S就为Pi/4,于是就有Pi=4×C/S.可以利用计算机随机产生大量位于正方形内部的点,通过点的数量去近似表示面积.假设位于正方形中点的数量为Ps,落在圆内的点的数量为Pc,则随机点的数量趋近于无穷时,4×Pc/Ps将逼近于Pi. idea实现代码: package com.hadoop import scala.math.random import org.

Spark MLlib知识点整理

MLlib的设计原理:把数据以RDD的形式表示,然后在分布式数据集上调用各种算法.MLlib就是RDD上一系列可供调用的函数的集合. 操作步骤: 1.用字符串RDD来表示信息. 2.运行MLlib中的一个特征提取算法来吧文本数据转换为数值的特征.给操作会返回一个向量RDD. 3.对向量RDD调用分类算法,返回一个模型对象,可以使用该对象对新的数据点进行分类. 4.使用MLlib的评估函数在测试数据集上评估模型. 机器学习基础: 机器学习算法尝试根据 训练数据 使得表示算法行为的数学目标最大化,并

Spark MLlib算法调用展示平台及其实现过程

1. 软件版本: IDE:Intellij IDEA 14,Java:1.7,Scala:2.10.6:Tomcat:7,CDH:5.8.0: Spark:1.6.0-cdh5.8.0-hadoop2.6.0-cdh5.8.0 : Hadoop:hadoop2.6.0-cdh5.8.0:(使用的是CDH提供的虚拟机) 2. 工程下载及部署: Scala封装Spark算法工程:https://github.com/fansy1990/Spark_MLlib_Algorithm_1.6.0.git

Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said

Spark MLlib数据类型

MLlib支持几种数据类型:本地向量(local vectors),和存储在本地或者基于RDD的分布式矩阵(matrices).底层的线性代数转换操作是基于Breeze和jblas实现的.在MLlib中有监督学习算法使用的训练样本数据类型被称为"带标签的点(labeled point)". 一.本地向量(Local Vector) 一个本地向量是由从0开始的整型下标和double型数值组成的,存储在单机节点上.MLlib支持两种类型的本地向量:密集(dense)的和稀疏(sparse)

Spark MLlib(下)--机器学习库SparkMLlib实战

1.MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analysis)有时也被翻译为簇类,其核心任务是:将一组目标object划分为若干个簇,每个簇之间的object尽可能相似,簇与簇之间的object尽可能相异.聚类算法是机器学习(或者说是数据挖掘更合适)中重要的一部分,除了最为简单的K-Means聚类算法外,比较常见的还有层次法(CURE.CHAMELEON等).网格算法(STING.WaveCluster等),等等. 较权威的聚类问题定义:所谓聚类问题,就是给