假设X和Y均为含有n项的向量,
X = Vector(n) Y = Vector(n)
则相关度计算如下
Rou(x, y) = Cov(X, Y)/sqrt(D(X)*D(Y)) (1) = (E(XY)-E(X)E(Y))/sqrt((E(X^2)-(E(X)^2))*(E(Y^2)-(E(X)^2))) (2) = (Sigma(XY)/n - Sigma(X)*Sigma(Y)/n^2)/sqrt((Sigma(X^2)/n - (Sigma(X)/n)^2)*(Sigma(Y^2)/n - (Sigma(Y)/n)^2)) // *n = (Sigma(XY) - Sigma(X)*Sigma(Y)/n) / sqrt((Sigma(X^2) - Sigma(X)^2/n) * (Sigma(Y^2) - (Sigma(Y)^2/n)))
(1)和(2)的推断可以参考概率论和数理统计相关的书。
时间: 2024-11-09 00:04:55