CountDownLatch
一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。用给定的计数初始化CountDownLatch。调用countDown()计数减一,当计数到达零之前await()方法会一直阻塞,计数无法被重置。
public class CountDownLatch { private final Sync sync; public CountDownLatch(int count); public void countDown() { sync.releaseShared(1); } public void await() throws InterruptedException { sync.acquireSharedInterruptibly(1); } public boolean await(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); } }
CountDownLatch中主要有countDown()和await()方法。
countDown()递减计数,如果计数达到零,则是否所有等待的线程。
1. 如果当前计数大于零,则计数减一;
2. 如果减一之后计数为零,则重新调度所有等待该计数为零的线程;
3. 如果计数已经为零,则不发生任何操作;
await()使当前线程在计数为零之前一直阻塞,除非线程被中断或超出指定的等待时间;
如果计数为零,则立刻返回true
在进入此方法时,当前线程已经设置了中断状态或在等待时被中断,则抛出InterruptedException异常,并且清除当前线程的中断状态。如果超出了指定等待时间,则返回false,如果该时间小于等于零,则此方法根本不会等待。
package org.github.lujiango; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; public class Test16 { public static void main(String[] args) throws InterruptedException { final CountDownLatch begin = new CountDownLatch(1); final CountDownLatch end = new CountDownLatch(10); final ExecutorService exec = Executors.newFixedThreadPool(10); for (int i = 0; i < 10; i++) { final int no = i + 1; Runnable run = new Runnable() { @Override public void run() { try { begin.await(); TimeUnit.MILLISECONDS.sleep((long) (Math.random() * 10000)); System.out.println("No." + no + " arrived"); } catch (Exception e) { } finally { end.countDown(); } } }; exec.submit(run); } System.out.println("Game start"); begin.countDown(); end.await(); System.out.println("Game over"); exec.shutdown(); } }
CyclicBarrier
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点。在涉及一组固定大小的线程的程序中,这些线程必须不时的互相等待。
package org.github.lujiango; import java.util.concurrent.BrokenBarrierException; import java.util.concurrent.CyclicBarrier; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; public class Test16 { public static void main(String[] args) throws InterruptedException, BrokenBarrierException { final CyclicBarrier end = new CyclicBarrier(10); final ExecutorService exec = Executors.newFixedThreadPool(10); System.out.println("Game start"); for (int i = 0; i < 10; i++) { final int no = i + 1; Runnable run = new Runnable() { @Override public void run() { try { end.await(); TimeUnit.MILLISECONDS.sleep((long) (Math.random() * 10000)); System.out.println("No." + no + " arrived"); } catch (Exception e) { } finally { } } }; exec.submit(run); } System.out.println("Game over"); exec.shutdown(); } }
需要所有的子任务都完成时,才执行主任务,这个时候可以选择使用CyclicBarrier。
Semaphore
一个计数信号量,信号量维护了一个许可集,在许可可用之前会阻塞每一个acquire(),然后获取该许可。每个release()释放许可,从而可能释放一个正在阻塞的获取者。
Semaphore只对可用许可的号码进行计数,并采取相应的行动,拿到信号的线程可以进入代码,否则就等待。
package org.github.lujiango; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; import java.util.concurrent.TimeUnit; public class Test17 { public static void main(String[] args) { ExecutorService exec = Executors.newCachedThreadPool(); final Semaphore semp = new Semaphore(5); for (int i = 0; i < 20; i++) { final int no = i; Runnable run = new Runnable() { @Override public void run() { try { semp.acquire(); System.out.println("Accessing: " + no); TimeUnit.MILLISECONDS.sleep((long) (Math.random() * 10000)); } catch (Exception e) { } finally { semp.release(); } } }; exec.submit(run); } exec.shutdown(); } }
Exchanger
Exchanger可以在两个线程之间交换数据,只能在两个线程,不支持更多的线程之间互换数据。
当线程A调用Exchanger对象的exchage()方法后,会阻塞;直到B线程也调用exchange()方法,然后线程以安全的方式交换数据,之后A和B线程继续执行。
package org.github.lujiango; import java.util.ArrayList; import java.util.List; import java.util.Random; import java.util.concurrent.Exchanger; public class Test18 { public static void main(String[] args) { Exchanger<List<Integer>> ex = new Exchanger<List<Integer>>(); new A(ex).start(); new B(ex).start(); } } class A extends Thread { List<Integer> list = new ArrayList<Integer>(); Exchanger<List<Integer>> ex; public A(Exchanger<List<Integer>> ex) { this.ex = ex; } @Override public void run() { Random random = new Random(); for (int i = 0; i < 10; i++) { list.clear(); list.add(random.nextInt(10)); list.add(random.nextInt(10)); list.add(random.nextInt(10)); try { list = ex.exchange(list); } catch (Exception e) { } } } } class B extends Thread { List<Integer> list = new ArrayList<Integer>(); Exchanger<List<Integer>> ex; public B(Exchanger<List<Integer>> ex) { this.ex = ex; } @Override public void run() { for (int i = 0; i < 10; i++) { try { list = ex.exchange(list); } catch (Exception e) { } System.out.println(list); } } }
Phaser
Phaser是一个灵活的线程同步工具,它包含了CountDownLatch和CyclicBarrier的相关功能。
CountDownLatch的countDown()和await()可以通过Phaser的arrive()和awaitAdvance(int n)代替
而CyclicBarrier的await可以使用Phaser的arriveAndAwaitAdvance()方法代替
用Phaser代替CountDownLatch:
package org.github.lujiango; import java.util.concurrent.Phaser; import java.util.concurrent.TimeUnit; public class Test19 { public static void main(String[] args) throws InterruptedException { final Phaser latch = new Phaser(10); for (int i = 1; i <= 10; i++) { final int id = i; Thread t = new Thread(new Runnable() { @Override public void run() { try { TimeUnit.SECONDS.sleep((long) (Math.random() * 10)); System.out.println("thread: " + id + " is running"); } catch (InterruptedException e) { e.printStackTrace(); } finally { latch.arrive(); } } }); t.start(); } latch.awaitAdvance(latch.getPhase()); System.out.println("all thread has run"); } }
package org.github.lujiango; import java.util.concurrent.Phaser; import java.util.concurrent.TimeUnit; public class Test19 { public static void main(String[] args) throws InterruptedException { final Phaser latch = new Phaser(10); for (int i = 1; i <= 10; i++) { final int id = i; Thread t = new Thread(new Runnable() { @Override public void run() { try { TimeUnit.SECONDS.sleep((long) (Math.random() * 10)); latch.arriveAndAwaitAdvance(); // 所有线程都执行到这里,才会继续执行,否则全部阻塞 System.out.println("thread: " + id + " is running"); } catch (InterruptedException e) { e.printStackTrace(); } finally { latch.arrive(); } } }); t.start(); } } }