经典回溯算法(八皇后问题)详解

八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:

在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上

(斜率为1),问有多少种摆法。高斯认为有76种方案。

1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。

计算机发明后,有多种方法可以解决此问题。

算法思路:

     首先我们分析一下问题的解,我们每取出一个皇后,放入一行,共有八种不同的放法,

然后再放第二个皇后,同样如果不考虑规则,还是有八种放法。

于是我们可以用一个八叉树来描述这个过程。从根节点开始,树每增加一层,便是多放一个皇后,

直到第8层(根节点为0层),最后得到一个完全八叉树。  

紧接着我们开始用深度优先遍历这个八叉树,在遍历的过程中,进行相应的条件的判断。以便去掉不合规则的子树。

    那么具体用什么条件来进行子树的裁剪呢?

    我们先对问题解的结构做一个约定。

 用X[i]来表示,在第i行,皇后放在了X[i]这个位置。

 于是我们考虑第一个条件,不能再同一行,同一列于是我们得到x[i]不能相同。

剩下一个条件是不能位于对角线上,这个条件不是很明显,我们经过分析得到,

设两个不同的皇后分别在j,k行上,x[j],x[k]分别表示在j,k行的那一列上。

那么不在同一对角线的条件可以写为abs((j-k))!=abs(x[j]-x[k]),其中abs为求绝对值的函数。

#include<iostream>
using namespace std;
int num;
int *x;
int sum;
bool place(int k)
{
    for(int j = 1;j<k;j++)
        if(abs(x[k] - x[j]) == abs(k-j)||x[j] == x[k])
            return false;
        return true;

}
void backtrack(int t)
{
    if(t>num) //num为皇后的数目
    {
        sum++;//sum为所有的可行的解
        for(int m = 1;m<=num;m++)
        {
            cout<<"<"<<m<<","<<x[m]<<">";//这一行用输出当递归到叶节点的时候,一个可行解
        }
        cout<<endl;
    }
    else
        for(int i = 1;i<=num;i++)
        {
            x[t] = i;
            if(place(t))
				backtrack(t+1);//此处的place函数用来进行我们上面所说的条件的判断,如果成立,进入下一级递归
        }
}
void main()
{
    num = 8;
    sum = 0;
    x = new int[num+1];
    for(int i= 0;i<=num;i++)
        x[i] = 0;
    backtrack(1);
    cout<<"方案共有"<<sum<<endl;
	delete []x;

}

时间: 2024-10-10 04:57:43

经典回溯算法(八皇后问题)详解的相关文章

经典回溯算法——八后问题

/************************************************************************/ /* 八后问题                                                             */ /************************************************************************/ #include <stdio.h> int count

回溯算法————n皇后、素数串

回溯就是算法是搜索算法中一种控制策略,是一个逐个试探的过程.在试探的过程中,如果遇到错误的选择,就会回到上一步继续选择下一种走法,一步一步的进行直到找到解或者证明无解为止. 如下是一个经典回溯问题n皇后的解答树: 下面就从n皇后说起: [问题描述] 在n×n的国际象棋盘上,放置n个皇后,使任何一个皇后都不能吃掉另一个,需满足的条件是:同一行.同一列.同一对角线上只能有一个皇后.求所有满足要求的放置方案.4皇后的放置方案如下: [输入]一个正整数n. [输出]每行代表一种放置方案:第i行的第一个数

算法学习笔记 KMP算法之 next 数组详解

最近回顾了下字符串匹配 KMP 算法,相对于朴素匹配算法,KMP算法核心改进就在于:待匹配串指针 i 不发生回溯,模式串指针 j 跳转到 next[j],即变为了 j = next[j]. 由此时间复杂度由朴素匹配的 O(m*n) 降到了 O(m+n), 其中模式串长度 m, 待匹配文本串长 n. 其中,比较难理解的地方就是 next 数组的求法.next 数组的含义:代表当前字符之前的字符串中,有多大长度的相同前缀后缀,也可看作有限状态自动机的状态,而且从自动机的角度反而更容易推导一些. "前

Dijkstra算法(三)之 Java详解

前面分别通过C和C++实现了迪杰斯特拉算法,本文介绍迪杰斯特拉算法的Java实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 迪杰斯特拉算法介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想

Kruskal算法(三)之 Java详解

前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的

一篇非常经典的springMVC注解实现方式详解

今天公司让搭建个springMVC的注解框架,研究了好半天,网络搜罗了半天,好不容易找到篇,拿来分享下: 原文出处:http://www.itxxz.com/a/kuangjia/2014/0531/4.html 大家好,我是IT学习者的螃蟹,前两天写了一个spring MVC的注解实例,目前看来下载使用的人数已有不少,使用过程中也有不少人对其中的配置存有一些不解和疑问,在这里螃蟹就那个实例中的spring配置详细说明一下,算作是对spring注解模式的一次全方位解析.         在实例中

Kruskal算法(二)之 C++详解

本章是克鲁斯卡尔算法的C++实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树. 例如,对于如上图G4所示的

常用经典SQL语句大全完整版--详解+实例 《来自网络,很全没整理,寄存与此》

常用经典SQL语句大全完整版--详解+实例 下列语句部分是Mssql语句,不可以在access中使用. SQL分类: DDL—数据定义语言(CREATE,ALTER,DROP,DECLARE) DML—数据操纵语言(SELECT,DELETE,UPDATE,INSERT) DCL—数据控制语言(GRANT,REVOKE,COMMIT,ROLLBACK) 首先,简要介绍基础语句: 1.说明:创建数据库CREATE DATABASE database-name 2.说明:删除数据库drop data

海量数据处理算法总结【超详解】

1. Bloom Filter [Bloom Filter]Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如果判断元素存在集合中,有一定的概率判断错误.因此,Bloom Filter不适合那些“零错误”的应用场合. 而在能容忍低错误率的应用场合